khanfs's picture
Create app.py
f8eeb2a verified
raw
history blame
1.06 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load the pre-trained model and tokenizer
model_name = "khanfs/ChemSolubilityBERTa"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Define the prediction function
def predict_solubility(smiles_string):
inputs = tokenizer(smiles_string, return_tensors='pt', truncation=True, padding='max_length', max_length=128)
with torch.no_grad():
outputs = model(**inputs)
solubility = outputs.logits.item()
return f"Predicted Solubility: {solubility:.4f} log mol/L"
# Gradio interface
iface = gr.Interface(
fn=predict_solubility,
inputs="text",
outputs="text",
title="ChemSolubilityBERTa",
description="Enter a SMILES string to predict its aqueous solubility using ChemSolubilityBERTa.",
examples=[["CCO"], ["CC(C)=O"], ["C1=CC=CC=C1"]] # Example SMILES strings for ethanol, acetone, and benzene
)
# Launch the app
iface.launch()