khaledeng15 commited on
Commit
e3c1dfe
·
1 Parent(s): 4189377
CMD.md ADDED
@@ -0,0 +1 @@
 
 
1
+ streamlit run main_page.py
main_page.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ st.set_page_config(
4
+ page_title="Hello",
5
+ page_icon="👋",
6
+ )
7
+
8
+ st.write("# Welcome to Streamlit! 👋")
9
+
10
+ st.sidebar.success("Select a demo above.")
11
+
12
+ st.markdown(
13
+ """
14
+ Streamlit is an open-source app framework built specifically for
15
+ Machine Learning and Data Science projects.
16
+ **👈 Select a demo from the sidebar** to see some examples
17
+ of what Streamlit can do!
18
+ ### Want to learn more?
19
+ - Check out [streamlit.io](https://streamlit.io)
20
+ - Jump into our [documentation](https://docs.streamlit.io)
21
+ - Ask a question in our [community
22
+ forums](https://discuss.streamlit.io)
23
+ ### See more complex demos
24
+ - Use a neural net to [analyze the Udacity Self-driving Car Image
25
+ Dataset](https://github.com/streamlit/demo-self-driving)
26
+ - Explore a [New York City rideshare dataset](https://github.com/streamlit/demo-uber-nyc-pickups)
27
+ """
28
+ )
pages/blip-image-captioning.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ pipe = pipeline("image-to-text",
5
+ model="Salesforce/blip-image-captioning-base")
6
+
7
+
8
+ def launch(input):
9
+ out = pipe(input)
10
+ return out[0]['generated_text']
11
+
12
+ iface = gr.Interface(launch,
13
+ inputs=gr.Image(type='pil'),
14
+ outputs="text")
15
+
16
+ iface.launch()
pages/noon.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from transformers import BloomTokenizerFast, BloomForCausalLM, pipeline
2
+
3
+
4
+ # text="اكتب مقالا من عدة أسطر عن الذكاء الصناعي وتطوراته"
5
+ # prompt = f'Instruction:\n{text}\n\nResponse:'
6
+
7
+ # model = BloomForCausalLM.from_pretrained('Naseej/noon-7b')
8
+
9
+ # tokenizer = BloomTokenizerFast.from_pretrained('Naseej/noon-7b')
10
+
11
+ # generation_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
12
+
13
+ # # We recommend the provided hyperparameters for generation
14
+ # # But encourage you to try different values
15
+ # response = generation_pipeline(prompt,
16
+ # pad_token_id=tokenizer.eos_token_id,
17
+ # do_sample=False,
18
+ # num_beams=4,
19
+ # max_length=500,
20
+ # top_p=0.1,
21
+ # top_k=20,
22
+ # repetition_penalty = 3.0,
23
+ # no_repeat_ngram_size=3)[0]['generated_text']
24
+
25
+ # print(response)
pages/text-genration.py ADDED
File without changes
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ transformers
2
+ torch
3
+ gradio