khaledeng15 commited on
Commit
98ed57d
·
1 Parent(s): a827854
app.py CHANGED
@@ -5,24 +5,18 @@ st.set_page_config(
5
  page_icon="👋",
6
  )
7
 
8
- st.write("# Welcome to Streamlit! 👋")
9
 
10
- st.sidebar.success("Select a demo above.")
11
 
12
  st.markdown(
13
  """
14
- Streamlit is an open-source app framework built specifically for
15
- Machine Learning and Data Science projects.
16
- **👈 Select a demo from the sidebar** to see some examples
17
- of what Streamlit can do!
18
- ### Want to learn more?
19
- - Check out [streamlit.io](https://streamlit.io)
20
- - Jump into our [documentation](https://docs.streamlit.io)
21
- - Ask a question in our [community
22
- forums](https://discuss.streamlit.io)
23
- ### See more complex demos
24
- - Use a neural net to [analyze the Udacity Self-driving Car Image
25
- Dataset](https://github.com/streamlit/demo-self-driving)
26
- - Explore a [New York City rideshare dataset](https://github.com/streamlit/demo-uber-nyc-pickups)
27
- """
28
  )
 
5
  page_icon="👋",
6
  )
7
 
8
+ st.write("# Welcome to Khaled Space! 👋")
9
 
10
+
11
 
12
  st.markdown(
13
  """
14
+ Welcome to **Khaled's AI Learning Hub**! 🚀
15
+
16
+ This platform is dedicated to showcasing AI development projects, all designed to help you explore and understand the power of artificial intelligence. 🤖💡
17
+
18
+ **👈 Select a project from the sidebar** to see hands-on examples ranging from data processing to model deployment. Each project page will guide you through different aspects of AI development, helping you gain practical insights.
19
+
20
+
21
+ """
 
 
 
 
 
 
22
  )
helper/__pycache__/image_helper.cpython-312.pyc ADDED
Binary file (509 Bytes). View file
 
helper/image_helper.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import base64
2
+
3
+ def to_base64(uploaded_file):
4
+ file_buffer = uploaded_file.read()
5
+ b64 = base64.b64encode(file_buffer).decode()
6
+ return f"data:image/png;base64,{b64}"
pages/blip-image-captioning.py CHANGED
@@ -1,22 +1,39 @@
1
- # import gradio as gr
2
  import streamlit as st
3
  from io import StringIO
 
 
 
4
 
5
  from transformers import pipeline
6
 
 
 
7
  pipe = pipeline("image-to-text",
8
  model="Salesforce/blip-image-captioning-base")
9
 
10
  def process_file():
11
- st.write(launch(uploaded_file))
12
-
 
 
13
  def launch(input):
14
  out = pipe(input)
15
  return out[0]['generated_text']
16
 
17
- uploaded_file = st.file_uploader("Choose a file", on_change=process_file)
18
 
 
 
 
 
 
 
 
 
 
 
19
 
 
 
20
 
21
  # iface = gr.Interface(launch,
22
  # inputs=gr.Image(type='pil'),
 
 
1
  import streamlit as st
2
  from io import StringIO
3
+ from PIL import Image
4
+ import numpy as np
5
+
6
 
7
  from transformers import pipeline
8
 
9
+ from helper.image_helper import to_base64
10
+
11
  pipe = pipeline("image-to-text",
12
  model="Salesforce/blip-image-captioning-base")
13
 
14
  def process_file():
15
+ stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
16
+ txt = launch(stringio)
17
+ st.write(txt)
18
+
19
  def launch(input):
20
  out = pipe(input)
21
  return out[0]['generated_text']
22
 
 
23
 
24
+ # uploaded_file = st.file_uploader("Choose a file", on_change=process_file)
25
+
26
+ uploaded_file = st.file_uploader("Choose a file")
27
+ if uploaded_file is not None:
28
+ # st.image(uploaded_file)
29
+ image = Image.open(uploaded_file)
30
+
31
+ # bytes_data = uploaded_file.getvalue()
32
+ base64 = to_base64(uploaded_file)
33
+ st.image(base64)
34
 
35
+ txt = launch(base64)
36
+ st.write(txt)
37
 
38
  # iface = gr.Interface(launch,
39
  # inputs=gr.Image(type='pil'),
pages/noon.py CHANGED
@@ -1,25 +1,28 @@
1
- # from transformers import BloomTokenizerFast, BloomForCausalLM, pipeline
2
 
 
3
 
4
- # text="اكتب مقالا من عدة أسطر عن الذكاء الصناعي وتطوراته"
5
- # prompt = f'Instruction:\n{text}\n\nResponse:'
6
 
7
- # model = BloomForCausalLM.from_pretrained('Naseej/noon-7b')
 
8
 
9
- # tokenizer = BloomTokenizerFast.from_pretrained('Naseej/noon-7b')
10
 
11
- # generation_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
12
 
13
- # # We recommend the provided hyperparameters for generation
14
- # # But encourage you to try different values
15
- # response = generation_pipeline(prompt,
16
- # pad_token_id=tokenizer.eos_token_id,
17
- # do_sample=False,
18
- # num_beams=4,
19
- # max_length=500,
20
- # top_p=0.1,
21
- # top_k=20,
22
- # repetition_penalty = 3.0,
23
- # no_repeat_ngram_size=3)[0]['generated_text']
24
 
25
- # print(response)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
 
3
+ from transformers import BloomTokenizerFast, BloomForCausalLM, pipeline
4
 
 
 
5
 
6
+ text="اكتب مقالا من عدة أسطر عن الذكاء الصناعي وتطوراته"
7
+ prompt = f'Instruction:\n{text}\n\nResponse:'
8
 
9
+ model = BloomForCausalLM.from_pretrained('Naseej/noon-7b')
10
 
11
+ tokenizer = BloomTokenizerFast.from_pretrained('Naseej/noon-7b')
12
 
13
+ generation_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
 
 
 
 
 
 
 
 
 
 
14
 
15
+ # We recommend the provided hyperparameters for generation
16
+ # But encourage you to try different values
17
+ response = generation_pipeline(prompt,
18
+ pad_token_id=tokenizer.eos_token_id,
19
+ do_sample=False,
20
+ num_beams=4,
21
+ max_length=500,
22
+ top_p=0.1,
23
+ top_k=20,
24
+ repetition_penalty = 3.0,
25
+ no_repeat_ngram_size=3)[0]['generated_text']
26
+
27
+ # print(response)
28
+ st.write(response)