asr / audiosr /utils.py
Nick088's picture
added audio sr files, adapted them to zerogpu and optimization for memory
fa90792
import contextlib
import importlib
from huggingface_hub import hf_hub_download
import numpy as np
import torch
from inspect import isfunction
import os
import subprocess
import tempfile
import json
import soundfile as sf
import time
import wave
import torchaudio
import progressbar
from librosa.filters import mel as librosa_mel_fn
from audiosr.lowpass import lowpass
hann_window = {}
mel_basis = {}
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
def spectral_de_normalize_torch(magnitudes):
output = dynamic_range_decompression_torch(magnitudes)
return output
def _locate_cutoff_freq(stft, percentile=0.97):
def _find_cutoff(x, percentile=0.95):
percentile = x[-1] * percentile
for i in range(1, x.shape[0]):
if x[-i] < percentile:
return x.shape[0] - i
return 0
magnitude = torch.abs(stft)
energy = torch.cumsum(torch.sum(magnitude, dim=0), dim=0)
return _find_cutoff(energy, percentile)
def pad_wav(waveform, target_length):
waveform_length = waveform.shape[-1]
assert waveform_length > 100, "Waveform is too short, %s" % waveform_length
if waveform_length == target_length:
return waveform
# Pad
temp_wav = np.zeros((1, target_length), dtype=np.float32)
rand_start = 0
temp_wav[:, rand_start : rand_start + waveform_length] = waveform
return temp_wav
def lowpass_filtering_prepare_inference(dl_output):
waveform = dl_output["waveform"] # [1, samples]
sampling_rate = dl_output["sampling_rate"]
cutoff_freq = (
_locate_cutoff_freq(dl_output["stft"], percentile=0.985) / 1024
) * 24000
# If the audio is almost empty. Give up processing
if(cutoff_freq < 1000):
cutoff_freq = 24000
order = 8
ftype = np.random.choice(["butter", "cheby1", "ellip", "bessel"])
filtered_audio = lowpass(
waveform.numpy().squeeze(),
highcut=cutoff_freq,
fs=sampling_rate,
order=order,
_type=ftype,
)
filtered_audio = torch.FloatTensor(filtered_audio.copy()).unsqueeze(0)
if waveform.size(-1) <= filtered_audio.size(-1):
filtered_audio = filtered_audio[..., : waveform.size(-1)]
else:
filtered_audio = torch.functional.pad(
filtered_audio, (0, waveform.size(-1) - filtered_audio.size(-1))
)
return {"waveform_lowpass": filtered_audio}
def mel_spectrogram_train(y):
global mel_basis, hann_window
sampling_rate = 48000
filter_length = 2048
hop_length = 480
win_length = 2048
n_mel = 256
mel_fmin = 20
mel_fmax = 24000
if 24000 not in mel_basis:
mel = librosa_mel_fn(sr=sampling_rate, n_fft=filter_length, n_mels=n_mel, fmin=mel_fmin, fmax=mel_fmax)
mel_basis[str(mel_fmax) + "_" + str(y.device)] = (
torch.from_numpy(mel).float().to(y.device)
)
hann_window[str(y.device)] = torch.hann_window(win_length).to(y.device)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((filter_length - hop_length) / 2), int((filter_length - hop_length) / 2)),
mode="reflect",
)
y = y.squeeze(1)
stft_spec = torch.stft(
y,
filter_length,
hop_length=hop_length,
win_length=win_length,
window=hann_window[str(y.device)],
center=False,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
stft_spec = torch.abs(stft_spec)
mel = spectral_normalize_torch(
torch.matmul(mel_basis[str(mel_fmax) + "_" + str(y.device)], stft_spec)
)
return mel[0], stft_spec[0]
def pad_spec(log_mel_spec, target_frame):
n_frames = log_mel_spec.shape[0]
p = target_frame - n_frames
# cut and pad
if p > 0:
m = torch.nn.ZeroPad2d((0, 0, 0, p))
log_mel_spec = m(log_mel_spec)
elif p < 0:
log_mel_spec = log_mel_spec[0:target_frame, :]
if log_mel_spec.size(-1) % 2 != 0:
log_mel_spec = log_mel_spec[..., :-1]
return log_mel_spec
def wav_feature_extraction(waveform, target_frame):
waveform = waveform[0, ...]
waveform = torch.FloatTensor(waveform)
log_mel_spec, stft = mel_spectrogram_train(waveform.unsqueeze(0))
log_mel_spec = torch.FloatTensor(log_mel_spec.T)
stft = torch.FloatTensor(stft.T)
log_mel_spec, stft = pad_spec(log_mel_spec, target_frame), pad_spec(
stft, target_frame
)
return log_mel_spec, stft
def normalize_wav(waveform):
waveform = waveform - np.mean(waveform)
waveform = waveform / (np.max(np.abs(waveform)) + 1e-8)
return waveform * 0.5
def read_wav_file(filename):
waveform, sr = torchaudio.load(filename)
duration = waveform.size(-1) / sr
if(duration > 10.24):
print("\033[93m {}\033[00m" .format("Warning: audio is longer than 10.24 seconds, may degrade the model performance. It's recommand to truncate your audio to 5.12 seconds before input to AudioSR to get the best performance."))
if(duration % 5.12 != 0):
pad_duration = duration + (5.12 - duration % 5.12)
else:
pad_duration = duration
target_frame = int(pad_duration * 100)
waveform = torchaudio.functional.resample(waveform, sr, 48000)
waveform = waveform.numpy()[0, ...]
waveform = normalize_wav(
waveform
) # TODO rescaling the waveform will cause low LSD score
waveform = waveform[None, ...]
waveform = pad_wav(waveform, target_length=int(48000 * pad_duration))
return waveform, target_frame, pad_duration
def read_audio_file(filename):
waveform, target_frame, duration = read_wav_file(filename)
log_mel_spec, stft = wav_feature_extraction(waveform, target_frame)
return log_mel_spec, stft, waveform, duration, target_frame
def read_list(fname):
result = []
with open(fname, "r", encoding="utf-8") as f:
for each in f.readlines():
each = each.strip("\n")
result.append(each)
return result
def get_duration(fname):
with contextlib.closing(wave.open(fname, "r")) as f:
frames = f.getnframes()
rate = f.getframerate()
return frames / float(rate)
def get_bit_depth(fname):
with contextlib.closing(wave.open(fname, "r")) as f:
bit_depth = f.getsampwidth() * 8
return bit_depth
def get_time():
t = time.localtime()
return time.strftime("%d_%m_%Y_%H_%M_%S", t)
def seed_everything(seed):
import random, os
import numpy as np
import torch
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def strip_silence(orignal_path, input_path, output_path):
get_dur = subprocess.run([
'ffprobe',
'-v', 'error',
'-select_streams', 'a:0',
'-show_entries', 'format=duration',
'-sexagesimal',
'-of', 'json',
orignal_path
], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
duration = json.loads(get_dur.stdout)['format']['duration']
subprocess.run([
'ffmpeg',
'-y',
'-ss', '00:00:00',
'-i', input_path,
'-t', duration,
'-c', 'copy',
output_path
])
os.remove(input_path)
def save_wave(waveform, inputpath, savepath, name="outwav", samplerate=16000):
if type(name) is not list:
name = [name] * waveform.shape[0]
for i in range(waveform.shape[0]):
if waveform.shape[0] > 1:
fname = "%s_%s.wav" % (
os.path.basename(name[i])
if (not ".wav" in name[i])
else os.path.basename(name[i]).split(".")[0],
i,
)
else:
fname = (
"%s.wav" % os.path.basename(name[i])
if (not ".wav" in name[i])
else os.path.basename(name[i]).split(".")[0]
)
# Avoid the file name too long to be saved
if len(fname) > 255:
fname = f"{hex(hash(fname))}.wav"
save_path = os.path.join(savepath, fname)
temp_path = os.path.join(tempfile.gettempdir(), fname)
print("\033[98m {}\033[00m" .format("Don't forget to try different seeds by setting --seed <int> so that AudioSR can have optimal performance on your hardware."))
print("Save audio to %s." % save_path)
sf.write(temp_path, waveform[i, 0], samplerate=samplerate)
strip_silence(inputpath, temp_path, save_path)
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
return total_params
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def instantiate_from_config(config):
if not "target" in config:
if config == "__is_first_stage__":
return None
elif config == "__is_unconditional__":
return None
raise KeyError("Expected key `target` to instantiate.")
try:
return get_obj_from_str(config["target"])(**config.get("params", dict()))
except:
import ipdb
ipdb.set_trace()
def default_audioldm_config(model_name="basic"):
basic_config = get_basic_config()
return basic_config
class MyProgressBar:
def __init__(self):
self.pbar = None
def __call__(self, block_num, block_size, total_size):
if not self.pbar:
self.pbar = progressbar.ProgressBar(maxval=total_size)
self.pbar.start()
downloaded = block_num * block_size
if downloaded < total_size:
self.pbar.update(downloaded)
else:
self.pbar.finish()
def download_checkpoint(checkpoint_name="basic"):
if checkpoint_name == "basic":
model_id = "haoheliu/audiosr_basic"
checkpoint_path = hf_hub_download(
repo_id=model_id, filename="pytorch_model.bin"
)
elif checkpoint_name == "speech":
model_id = "haoheliu/audiosr_speech"
checkpoint_path = hf_hub_download(
repo_id=model_id, filename="pytorch_model.bin"
)
else:
raise ValueError("Invalid Model Name %s" % checkpoint_name)
return checkpoint_path
def get_basic_config():
return {
"preprocessing": {
"audio": {
"sampling_rate": 48000,
"max_wav_value": 32768,
"duration": 10.24,
},
"stft": {"filter_length": 2048, "hop_length": 480, "win_length": 2048},
"mel": {"n_mel_channels": 256, "mel_fmin": 20, "mel_fmax": 24000},
},
"augmentation": {"mixup": 0.5},
"model": {
"target": "audiosr.latent_diffusion.models.ddpm.LatentDiffusion",
"params": {
"first_stage_config": {
"base_learning_rate": 0.000008,
"target": "audiosr.latent_encoder.autoencoder.AutoencoderKL",
"params": {
"reload_from_ckpt": "/mnt/bn/lqhaoheliu/project/audio_generation_diffusion/log/vae/vae_48k_256/ds_8_kl_1/checkpoints/ckpt-checkpoint-484999.ckpt",
"sampling_rate": 48000,
"batchsize": 4,
"monitor": "val/rec_loss",
"image_key": "fbank",
"subband": 1,
"embed_dim": 16,
"time_shuffle": 1,
"ddconfig": {
"double_z": True,
"mel_bins": 256,
"z_channels": 16,
"resolution": 256,
"downsample_time": False,
"in_channels": 1,
"out_ch": 1,
"ch": 128,
"ch_mult": [1, 2, 4, 8],
"num_res_blocks": 2,
"attn_resolutions": [],
"dropout": 0.1,
},
},
},
"base_learning_rate": 0.0001,
"warmup_steps": 5000,
"optimize_ddpm_parameter": True,
"sampling_rate": 48000,
"batchsize": 16,
"beta_schedule": "cosine",
"linear_start": 0.0015,
"linear_end": 0.0195,
"num_timesteps_cond": 1,
"log_every_t": 200,
"timesteps": 1000,
"unconditional_prob_cfg": 0.1,
"parameterization": "v",
"first_stage_key": "fbank",
"latent_t_size": 128,
"latent_f_size": 32,
"channels": 16,
"monitor": "val/loss_simple_ema",
"scale_by_std": True,
"unet_config": {
"target": "audiosr.latent_diffusion.modules.diffusionmodules.openaimodel.UNetModel",
"params": {
"image_size": 64,
"in_channels": 32,
"out_channels": 16,
"model_channels": 128,
"attention_resolutions": [8, 4, 2],
"num_res_blocks": 2,
"channel_mult": [1, 2, 3, 5],
"num_head_channels": 32,
"extra_sa_layer": True,
"use_spatial_transformer": True,
"transformer_depth": 1,
},
},
"evaluation_params": {
"unconditional_guidance_scale": 3.5,
"ddim_sampling_steps": 200,
"n_candidates_per_samples": 1,
},
"cond_stage_config": {
"concat_lowpass_cond": {
"cond_stage_key": "lowpass_mel",
"conditioning_key": "concat",
"target": "audiosr.latent_diffusion.modules.encoders.modules.VAEFeatureExtract",
"params": {
"first_stage_config": {
"base_learning_rate": 0.000008,
"target": "audiosr.latent_encoder.autoencoder.AutoencoderKL",
"params": {
"sampling_rate": 48000,
"batchsize": 4,
"monitor": "val/rec_loss",
"image_key": "fbank",
"subband": 1,
"embed_dim": 16,
"time_shuffle": 1,
"ddconfig": {
"double_z": True,
"mel_bins": 256,
"z_channels": 16,
"resolution": 256,
"downsample_time": False,
"in_channels": 1,
"out_ch": 1,
"ch": 128,
"ch_mult": [1, 2, 4, 8],
"num_res_blocks": 2,
"attn_resolutions": [],
"dropout": 0.1,
},
},
}
},
}
},
},
},
}