File size: 11,964 Bytes
fa90792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import numpy as np
import torch
from torch import nn as nn
from torchvision.ops.misc import FrozenBatchNorm2d
import logging
from tqdm import tqdm
import random
import json
import os
import pathlib

# TODO: (yusong) this not a good place to store those information and does not scale. Need to be fixed later.
dataset_split = {
    "audiocaps": ["train", "valid", "test"],
    "audioset": ["balanced_train", "unbalanced_train", "eval"],
    "BBCSoundEffects": ["train", "test"],
    "Clotho": ["train", "test", "valid"],
    "free_to_use_sounds": ["train", "test"],
    "paramount_motion": ["train", "test"],
    "sonniss_game_effects": ["train", "test"],
    "wesoundeffects": ["train", "test"],
    "MACS": ["train", "test"],
    "freesound": ["train", "test"],
    "FSD50K": ["train", "test", "valid"],
    "fsd50k_class_label": ["train", "test", "valid"],
    "esc50": ["train", "test"],
    "audiostock": ["train", "test"],
    "freesound_no_overlap_noesc50": ["train", "test"],
    "epidemic_sound_effects": ["train", "test"],
    "VGGSound": ["train", "test"],
    "urbansound8k_class_label": ["train", "test"],
    "audioset_t5": ["balanced_train", "unbalanced_train", "eval"],
    "epidemic_sound_effects_t5": ["train", "test"],
    "WavText5K": ["train", "test"],
    "esc50_no_overlap": ["train", "test"],
    "usd8k_no_overlap": ["train", "test"],
    "fsd50k_200_class_label": ["train", "test", "valid"],
}


def freeze_batch_norm_2d(module, module_match={}, name=""):
    """
    Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
    itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
    returned. Otherwise, the module is walked recursively and submodules are converted in place.

    Args:
        module (torch.nn.Module): Any PyTorch module.
        module_match (dict): Dictionary of full module names to freeze (all if empty)
        name (str): Full module name (prefix)

    Returns:
        torch.nn.Module: Resulting module

    Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
    """
    res = module
    is_match = True
    if module_match:
        is_match = name in module_match
    if is_match and isinstance(
        module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)
    ):
        res = FrozenBatchNorm2d(module.num_features)
        res.num_features = module.num_features
        res.affine = module.affine
        if module.affine:
            res.weight.data = module.weight.data.clone().detach()
            res.bias.data = module.bias.data.clone().detach()
        res.running_mean.data = module.running_mean.data
        res.running_var.data = module.running_var.data
        res.eps = module.eps
    else:
        for child_name, child in module.named_children():
            full_child_name = ".".join([name, child_name]) if name else child_name
            new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
            if new_child is not child:
                res.add_module(child_name, new_child)
    return res


def exist(dataset_name, dataset_type):
    """
    Check if dataset exists
    """
    if dataset_type in dataset_split[dataset_name]:
        return True
    else:
        return False


def get_tar_path_from_dataset_name(
    dataset_names, dataset_types, islocal, dataset_path, proportion=1, full_dataset=None
):
    """
    Get tar path from dataset name and type
    """
    output = []
    for n in dataset_names:
        if full_dataset is not None and n in full_dataset:
            current_dataset_types = dataset_split[n]
        else:
            current_dataset_types = dataset_types
        for s in current_dataset_types:
            tmp = []
            if islocal:
                sizefilepath_ = f"{dataset_path}/{n}/{s}/sizes.json"
                if not os.path.exists(sizefilepath_):
                    sizefilepath_ = f"./json_files/{n}/{s}/sizes.json"
            else:
                sizefilepath_ = f"./json_files/{n}/{s}/sizes.json"
            if not os.path.exists(sizefilepath_):
                continue
            sizes = json.load(open(sizefilepath_, "r"))
            for k in sizes.keys():
                if islocal:
                    tmp.append(f"{dataset_path}/{n}/{s}/{k}")
                else:
                    tmp.append(
                        f"pipe:aws s3 --cli-connect-timeout 0 cp s3://s-laion-audio/webdataset_tar/{n}/{s}/{k} -"
                    )
            if proportion != 1:
                tmp = random.sample(tmp, int(proportion * len(tmp)))
            output.append(tmp)
    return sum(output, [])


def get_tar_path_from_txts(txt_path, islocal, proportion=1):
    """
    Get tar path from txt path
    """
    if isinstance(txt_path, (list, tuple)):
        return sum(
            [
                get_tar_path_from_txts(
                    txt_path[i], islocal=islocal, proportion=proportion
                )
                for i in range(len(txt_path))
            ],
            [],
        )
    if isinstance(txt_path, str):
        with open(txt_path) as f:
            lines = f.readlines()
        if islocal:
            lines = [
                lines[i]
                .split("\n")[0]
                .replace("pipe:aws s3 cp s3://s-laion-audio/", "/mnt/audio_clip/")
                for i in range(len(lines))
            ]
        else:
            lines = [
                lines[i].split("\n")[0].replace(".tar", ".tar -")
                for i in range(len(lines))
            ]
        if proportion != 1:
            print("Sampling tars with proportion of {}".format(proportion))
            lines = random.sample(lines, int(proportion * len(lines)))
        return lines


def get_mix_lambda(mixup_alpha, batch_size):
    mixup_lambdas = [
        np.random.beta(mixup_alpha, mixup_alpha, 1)[0] for _ in range(batch_size)
    ]
    return np.array(mixup_lambdas).astype(np.float32)


def do_mixup(x, mixup_lambda):
    """
    Args:
      x: (batch_size , ...)
      mixup_lambda: (batch_size,)
    Returns:
      out: (batch_size, ...)
    """
    out = (
        x.transpose(0, -1) * mixup_lambda
        + torch.flip(x, dims=[0]).transpose(0, -1) * (1 - mixup_lambda)
    ).transpose(0, -1)
    return out


def interpolate(x, ratio):
    """Interpolate data in time domain. This is used to compensate the
    resolution reduction in downsampling of a CNN.

    Args:
      x: (batch_size, time_steps, classes_num)
      ratio: int, ratio to interpolate
    Returns:
      upsampled: (batch_size, time_steps * ratio, classes_num)
    """
    (batch_size, time_steps, classes_num) = x.shape
    upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1)
    upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num)
    return upsampled


def pad_framewise_output(framewise_output, frames_num):
    """Pad framewise_output to the same length as input frames. The pad value
    is the same as the value of the last frame.
    Args:
      framewise_output: (batch_size, frames_num, classes_num)
      frames_num: int, number of frames to pad
    Outputs:
      output: (batch_size, frames_num, classes_num)
    """
    pad = framewise_output[:, -1:, :].repeat(
        1, frames_num - framewise_output.shape[1], 1
    )
    """tensor for padding"""

    output = torch.cat((framewise_output, pad), dim=1)
    """(batch_size, frames_num, classes_num)"""


# def process_ipc(index_path, classes_num, filename):
#     # load data
#     logging.info("Load Data...............")
#     ipc = [[] for _ in range(classes_num)]
#     with h5py.File(index_path, "r") as f:
#         for i in tqdm(range(len(f["target"]))):
#             t_class = np.where(f["target"][i])[0]
#             for t in t_class:
#                 ipc[t].append(i)
#     print(ipc)
#     np.save(filename, ipc)
#     logging.info("Load Data Succeed...............")


def save_to_dict(s, o_={}):
    sp = s.split(": ")
    o_.update({sp[0]: float(sp[1])})
    return o_


def get_data_from_log(txt_path):
    """
    Output dictionary from out.txt log file
    """
    with open(txt_path) as f:
        lines = f.readlines()
    val_data = {}
    train_data = {}
    train_losses = []
    train_losses_epoch = []
    for i in range(len(lines)):
        if "| INFO |" in lines[i]:
            if "Eval Epoch" in lines[i]:
                if "val_loss" in lines[i]:
                    # float(regex.sub("", lines[310].split("	")[-1]).replace(" ", ""))
                    line = lines[i].split("Eval Epoch: ")[-1]
                    num_epoch = int(line.split("	")[0].split(" ")[0])
                    d = {
                        line.split("	")[0]
                        .split(" ")[1]
                        .replace(":", ""): float(line.split("	")[0].split(" ")[-1])
                    }
                    for i in range(1, len(line.split("	"))):
                        d = save_to_dict(line.split("	")[i], d)
                    val_data[num_epoch] = d
            elif "Train Epoch" in lines[i]:
                num_epoch = int(lines[i].split("Train Epoch: ")[1][0])
                loss = float(lines[i].split("Loss: ")[-1].split(" (")[0])
                train_losses.append(loss)
                train_losses_epoch.append(num_epoch)
    for i in range(len(train_losses)):
        train_data[i] = {
            "num_epoch": train_losses_epoch[i],
            "train_loss": train_losses[i],
        }
    return train_data, val_data


def save_p(obj, filename):
    import pickle

    try:
        from deepdiff import DeepDiff
    except:
        os.system("pip install deepdiff")
        from deepdiff import DeepDiff
    with open(filename, "wb") as file:
        pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL)  # highest protocol
    with open(filename, "rb") as file:
        z = pickle.load(file)
    assert (
        DeepDiff(obj, z, ignore_string_case=True) == {}
    ), "there is something wrong with the saving process"
    return


def load_p(filename):
    import pickle

    with open(filename, "rb") as file:
        z = pickle.load(file)
    return z


def save_json(data, name="data.json"):
    import json

    with open(name, "w") as fp:
        json.dump(data, fp)
    return


def load_json(name):
    import json

    with open(name, "r") as fp:
        data = json.load(fp)
    return data


def load_class_label(path):
    # https://stackoverflow.com/questions/48004243/how-to-share-large-read-only-dictionary-list-across-processes-in-multiprocessing
    # https://stackoverflow.com/questions/45693949/storing-strings-in-a-multiprocessing-sharedctypes-array
    out = None
    if path is not None:
        if pathlib.Path(path).suffix in [".pkl", ".pickle"]:
            out = load_p(path)
        elif pathlib.Path(path).suffix in [".json", ".txt"]:
            out = load_json(path)
        elif pathlib.Path(path).suffix in [".npy", ".npz"]:
            out = np.load(path)
        elif pathlib.Path(path).suffix in [".csv"]:
            import pandas as pd

            out = pd.read_csv(path)
    return out
    # if out is None:
    #     return None
    # else:
    #     key = Array(c_wchar, '\n'.join(list(out.keys())), lock=False)
    #     val = Array('i', out.values(), lock=False)
    #     return (key, val)


from torch import optim


def get_optimizer(params, lr, betas, eps, momentum, optimizer_name):
    if optimizer_name.lower() == "adamw":
        optimizer = optim.AdamW(params, lr=lr, betas=betas, eps=eps)
    elif optimizer_name.lower() == "sgd":
        optimizer = optim.SGD(params, lr=lr, momentum=momentum)
    elif optimizer_name.lower() == "adam":
        optimizer = optim.Adam(params, lr=lr, betas=betas, eps=eps)
    else:
        raise ValueError("optimizer name is not correct")
    return optimizer