Create app.py
Browse files1. add clip demo app
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoProcessor, CLIPModel
|
4 |
+
|
5 |
+
clip_path = "openai/clip-vit-base-patch32"
|
6 |
+
model = CLIPModel.from_pretrained(clip_path)
|
7 |
+
processor = AutoProcessor.from_pretrained(clip_path)
|
8 |
+
|
9 |
+
|
10 |
+
async def predict(init_image, labels_level1):
|
11 |
+
if init_image is None:
|
12 |
+
return "", ""
|
13 |
+
|
14 |
+
split_labels = labels_level1.split(",")
|
15 |
+
ret_str = ""
|
16 |
+
|
17 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
18 |
+
inputs = processor(
|
19 |
+
text=split_labels, images=init_image, return_tensors="pt", padding=True
|
20 |
+
)
|
21 |
+
|
22 |
+
outputs = model(**inputs)
|
23 |
+
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
24 |
+
|
25 |
+
|
26 |
+
for i in range(len(split_labels)):
|
27 |
+
ret_str += split_labels[i] + ": " + str(logits_per_image[0][i]) + "\n"
|
28 |
+
|
29 |
+
return ret_str, ret_str
|
30 |
+
|
31 |
+
|
32 |
+
css = """
|
33 |
+
#container{
|
34 |
+
margin: 0 auto;
|
35 |
+
max-width: 80rem;
|
36 |
+
}
|
37 |
+
#intro{
|
38 |
+
max-width: 100%;
|
39 |
+
text-align: center;
|
40 |
+
margin: 0 auto;
|
41 |
+
}
|
42 |
+
"""
|
43 |
+
with gr.Blocks(css=css) as demo:
|
44 |
+
init_image_state = gr.State()
|
45 |
+
with gr.Column(elem_id="container"):
|
46 |
+
gr.Markdown(
|
47 |
+
"""# Clip Demo
|
48 |
+
""",
|
49 |
+
elem_id="intro",
|
50 |
+
)
|
51 |
+
with gr.Row():
|
52 |
+
txt_input = gr.Textbox(
|
53 |
+
value="cartoon,painting,screenshot",
|
54 |
+
interactive=True, label="设定大类别类别", scale=5)
|
55 |
+
txt = gr.Textbox(value="", label="Output:", scale=5)
|
56 |
+
generate_bt = gr.Button("点击开始分类", scale=1)
|
57 |
+
with gr.Row():
|
58 |
+
with gr.Column():
|
59 |
+
image_input = gr.Image(
|
60 |
+
sources=["upload", "clipboard"],
|
61 |
+
label="User Image",
|
62 |
+
type="pil",
|
63 |
+
)
|
64 |
+
with gr.Row():
|
65 |
+
prob_label = gr.Textbox(value="", label="一级分类")
|
66 |
+
|
67 |
+
inputs = [image_input, txt_input]
|
68 |
+
generate_bt.click(fn=predict, inputs=inputs, outputs=[txt, prob_label], show_progress=True)
|
69 |
+
image_input.change(
|
70 |
+
fn=predict,
|
71 |
+
inputs=inputs,
|
72 |
+
outputs=[txt, prob_label],
|
73 |
+
show_progress=True,
|
74 |
+
queue=False,
|
75 |
+
)
|
76 |
+
|
77 |
+
demo.queue()
|
78 |
+
demo.launch(server_name='0.0.0.0', server_port=8081, share=False)
|