Spaces:
Running
Running
import gradio as gr | |
from inference import Inference | |
import os | |
import zipfile | |
import hashlib | |
from utils.model import model_downloader, get_model | |
import requests | |
import json | |
api_url = "https://rvc-models-api.onrender.com/uploadfile/" | |
zips_folder = "./zips" | |
unzips_folder = "./unzips" | |
if not os.path.exists(zips_folder): | |
os.mkdir(zips_folder) | |
if not os.path.exists(unzips_folder): | |
os.mkdir(unzips_folder) | |
def calculate_md5(file_path): | |
hash_md5 = hashlib.md5() | |
with open(file_path, "rb") as f: | |
for chunk in iter(lambda: f.read(4096), b""): | |
hash_md5.update(chunk) | |
return hash_md5.hexdigest() | |
def compress(modelname, files): | |
file_path = os.path.join(zips_folder, f"{modelname}.zip") | |
# Select the compression mode ZIP_DEFLATED for compression | |
# or zipfile.ZIP_STORED to just store the file | |
compression = zipfile.ZIP_DEFLATED | |
# Comprueba si el archivo ZIP ya existe | |
if not os.path.exists(file_path): | |
# Si no existe, crea el archivo ZIP | |
with zipfile.ZipFile(file_path, mode="w") as zf: | |
try: | |
for file in files: | |
if file: | |
# Agrega el archivo al archivo ZIP | |
zf.write(unzips_folder if ".index" in file else os.path.join(unzips_folder, file), compress_type=compression) | |
except FileNotFoundError as fnf: | |
print("An error occurred", fnf) | |
else: | |
# Si el archivo ZIP ya existe, agrega los archivos a un archivo ZIP existente | |
with zipfile.ZipFile(file_path, mode="a") as zf: | |
try: | |
for file in files: | |
if file: | |
# Agrega el archivo al archivo ZIP | |
zf.write(unzips_folder if ".index" in file else os.path.join(unzips_folder, file), compress_type=compression) | |
except FileNotFoundError as fnf: | |
print("An error occurred", fnf) | |
return file_path | |
def infer(model, f0_method, audio_file): | |
print("****", audio_file) | |
inference = Inference( | |
model_name=model, | |
f0_method=f0_method, | |
source_audio_path=audio_file, | |
output_file_name=os.path.join("./audio-outputs", os.path.basename(audio_file)) | |
) | |
output = inference.run() | |
if 'success' in output and output['success']: | |
return output, output['file'] | |
else: | |
return | |
def post_model(name, model_url, version, creator): | |
modelname = model_downloader(model_url, zips_folder, unzips_folder) | |
model_files = get_model(unzips_folder, modelname) | |
if not model_files: | |
return "No se encontrado un modelo valido, verifica el contenido del enlace e intentalo m谩s tarde." | |
if not model_files.get('pth'): | |
return "No se encontrado un modelo valido, verifica el contenido del enlace e intentalo m谩s tarde." | |
md5_hash = calculate_md5(os.path.join(unzips_folder,model_files['pth'])) | |
zipfile = compress(modelname, list(model_files.values())) | |
file_to_upload = open(zipfile, "rb") | |
data = { | |
"name": name, | |
"version": version, | |
"creator": creator, | |
"hash": md5_hash | |
} | |
print("Subiendo archivo...") | |
# Realizar la solicitud POST | |
response = requests.post(api_url, files={"file": file_to_upload}, data=data) | |
# Comprobar la respuesta | |
if response.status_code == 200: | |
result = response.json() | |
return json.dumps(result, indent=4) | |
else: | |
print("Error al cargar el archivo:", response.status_code) | |
return result | |
def search_model(name): | |
web_service_url = "https://script.google.com/macros/s/AKfycbzfIOiwmPj-q8-hEyvjRQfgLtO7ESolmtsQmnNheCujwnitDApBSjgTecdfXb8f2twT/exec" | |
response = requests.post(web_service_url, json={ | |
'type': 'search_by_filename', | |
'name': name | |
}) | |
result = [] | |
response.raise_for_status() # Lanza una excepci贸n en caso de error | |
json_response = response.json() | |
cont = 0 | |
if json_response.get('ok', None): | |
for model in json_response['ocurrences']: | |
if cont < 20: | |
model_name = model.get('name', 'N/A') | |
model_url = model.get('url', 'N/A') | |
result.append(f"**Nombre del modelo: {model_name}**</br>{model_url}</br>") | |
yield "</br>".join(result) | |
cont += 1 | |
with gr.Blocks() as app: | |
gr.HTML("<h1> Simple RVC Inference - by Juuxn 馃捇 </h1>") | |
with gr.Tab("Inferencia"): | |
model_url = gr.Textbox(placeholder="https://huggingface.co/AIVER-SE/BillieEilish/resolve/main/BillieEilish.zip", label="Url del modelo", show_label=True) | |
audio_path = gr.Audio(label="Archivo de audio", show_label=True, type="filepath", ) | |
f0_method = gr.Dropdown(choices=["harvest", "pm", "crepe", "crepe-tiny", "mangio-crepe", "mangio-crepe-tiny", "rmvpe"], | |
value="harvest", | |
label="Algoritmo", show_label=True) | |
# Salida | |
with gr.Row(): | |
vc_output1 = gr.Textbox(label="Salida") | |
vc_output2 = gr.Audio(label="Audio de salida") | |
btn = gr.Button(value="Convertir") | |
btn.click(infer, inputs=[model_url, f0_method, audio_path], outputs=[vc_output1, vc_output2]) | |
with gr.Tab("Recursos"): | |
gr.HTML("<h4>Buscar modelos</h4>") | |
search_name = gr.Textbox(placeholder="Billie Eillish (RVC v2 - 100 epoch)", label="Nombre", show_label=True) | |
# Salida | |
with gr.Row(): | |
sarch_output = gr.Markdown(label="Salida") | |
btn_search_model = gr.Button(value="Buscar") | |
btn_search_model.click(fn=search_model, inputs=[search_name], outputs=[sarch_output]) | |
gr.HTML("<h4>Publica tu modelo</h4>") | |
post_name = gr.Textbox(placeholder="Billie Eillish (RVC v2 - 100 epoch)", label="Nombre", show_label=True) | |
post_model_url = gr.Textbox(placeholder="https://huggingface.co/AIVER-SE/BillieEilish/resolve/main/BillieEilish.zip", label="Url del modelo", show_label=True) | |
post_creator = gr.Textbox(placeholder="ID de discord o enlace al perfil del creador", label="Creador", show_label=True) | |
post_version = gr.Dropdown(choices=["RVC v1", "RVC v2"], value="RVC v1", label="Versi贸n", show_label=True) | |
# Salida | |
with gr.Row(): | |
post_output = gr.Markdown(label="Salida") | |
btn_post_model = gr.Button(value="Publicar") | |
btn_post_model.click(fn=post_model, inputs=[post_name, post_model_url, post_version, post_creator], outputs=[post_output]) | |
app.queue(concurrency_count=511, max_size=1022).launch(share=True) |