Spaces:
Running
Running
File size: 7,590 Bytes
20d05ae 925d97e 20d05ae 8dc2b8f 613930c e3deb88 613930c 80a2de5 9965f6c 80a2de5 613930c 774c3fb 20bf74d 774c3fb 20bf74d 613930c eb3ba2e 8dc2b8f 13ec671 5e1f660 03bff01 0cb3834 03bff01 0cb3834 613930c 0cb3834 9031563 03bff01 0cb3834 03bff01 0cb3834 613930c 0cb3834 8dc2b8f e3deb88 8dc2b8f 80a2de5 90d557d 80a2de5 20d05ae eb927b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import gradio as gr
import os
from constants import VOICE_METHODS, BARK_VOICES, EDGE_VOICES
import platform
from models.model import *
from tts.conversion import COQUI_LANGUAGES
import pytube
import os
import traceback
from pydub import AudioSegment
# from audio_enhance.functions import audio_enhance
import ast
import argparse
import glob
import pickle
import numpy as np
import pandas as pd
block_css = """
#notice_markdown {
font-size: 104%
}
#notice_markdown th {
display: none;
}
#notice_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_markdown {
font-size: 104%
}
#leaderboard_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_dataframe td {
line-height: 0.1em;
}
footer {
display:none !important
}
.image-container {
display: flex;
align-items: center;
padding: 1px;
}
.image-container img {
margin: 0 30px;
height: 20px;
max-height: 100%;
width: auto;
max-width: 20%;
}
"""
def model_hyperlink(model_name, link):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def load_leaderboard_table_csv(filename, add_hyperlink=True):
lines = open(filename).readlines()
heads = [v.strip() for v in lines[0].split(",")]
rows = []
for i in range(1, len(lines)):
row = [v.strip() for v in lines[i].split(",")]
for j in range(len(heads)):
item = {}
for h, v in zip(heads, row):
if h != "AI歌手名/AI Singer" and h != "歌手代表作或介绍链接" and h != "模型zip链接/Link to Model Zip File" and h != "模型贡献者/Model Contributor":
item[h] = int(v)
else:
item[h] = v
if add_hyperlink:
item["AI歌手名/AI Singer"] = model_hyperlink(item["AI歌手名/AI Singer"], item["歌手代表作或介绍链接"])
rows.append(item)
return rows
def get_arena_table(model_table_df):
# sort by rating
model_table_df = model_table_df.sort_values(by=["训练素材时长/Duration of Training Dataset(min)"], ascending=False)
values = []
for i in range(len(model_table_df)):
row = []
model_key = model_table_df.index[i]
model_name = model_table_df["AI歌手名/AI Singer"].values[model_key]
# rank
row.append(i + 1)
# model display name
row.append(model_name)
row.append(
model_table_df["模型zip链接/Link to Model Zip File"].values[model_key]
)
row.append(
model_table_df["训练素材时长/Duration of Training Dataset(min)"].values[model_key]
)
row.append(
model_table_df["训练epoch数/Epoch"].values[model_key]
)
row.append(
model_table_df["模型贡献者/Model Contributor"].values[model_key]
)
values.append(row)
return values
title_markdown = ("""
<h2 align="center"> 🌊💕🎶 滔滔AI,AI歌手模型开源社区 </h2>
<h3 align="center"> 🌟 完全开源、完全免费、共建共享!全网AI歌手任您选择! </h3>
""")
pic_markdown = ("""
<h3 align="center"> </h3>
<h1 align="center"><a href="https://www.talktalkai.com/"><img src="https://download.openxlab.org.cn/models/Kevin676/rvc-models/weight/talktalkai-cover.png", alt="talktalkai-cover" border="0" style="margin: 0 auto; height: 300px;" /></a> </h1>
""")
data = load_leaderboard_table_csv("./OCRBench.csv")
model_table_df = pd.DataFrame(data)
text_size = gr.themes.sizes.text_lg
with gr.Blocks(theme=gr.themes.Base(text_size=text_size), css=block_css) as app:
gr.Markdown(title_markdown)
with gr.Tab("✨模型搜索及上传"):
gr.HTML("<h3>1. 搜索AI歌手模型</h3>")
gr.Markdown("##### 点击[此链接](https://docs.google.com/spreadsheets/d/1owfUtQuLW9ReiIwg6U9UkkDmPOTkuNHf0OKQtWu1iaI/edit?gid=1227575351#gid=1227575351),查看全网所有开源AI歌手模型,超9000个模型任您挑选 🥳")
search_name = gr.Textbox(placeholder="孙燕姿", label="请填写模型名称进行搜索", show_label=True)
# Salida
with gr.Row():
sarch_output = gr.Markdown(label="搜索结果")
btn_search_model = gr.Button(value="开始搜索吧💖", variant="primary")
btn_search_model.click(fn=search_model, inputs=[search_name], outputs=[sarch_output])
gr.HTML("<h3>2. 上传AI歌手模型至社区</h3>")
gr.HTML("<h4>上传完成后您立即可以搜索到您上传的模型</h4>")
post_name = gr.Textbox(placeholder="滔滔歌姬", label="请填写模型名称", show_label=True)
post_model_url = gr.Textbox(placeholder="https://huggingface.co/kevinwang676/RVC-models/resolve/main/talktalkgirl.zip", label="模型链接", info="1.推荐使用Hugging Face存放模型 2.复制Hugging Face模型链接后,需要将链接中的blob四个字母替换成resolve,使模型可以通过链接直接下载", show_label=True)
post_creator = gr.Textbox(placeholder="滔滔AI", label="模型贡献者", info="可填写您的昵称或任何有趣的ID", show_label=True)
post_version = gr.Dropdown(choices=["RVC v1", "RVC v2"], value="RVC v2", label="RVC模型版本", show_label=True)
# Salida
with gr.Row():
post_output = gr.Markdown(label="模型上传状态")
btn_post_model = gr.Button(value="开始上传吧💕", variant="primary")
btn_post_model.click(fn=post_model, inputs=[post_name, post_model_url, post_version, post_creator], outputs=[post_output])
with gr.Tab("🍻滔滔AI精选模型"):
arena_table_vals = get_arena_table(model_table_df)
md = """
AI翻唱🎶:您可以在社区中复制您喜欢的AI歌手的“模型zip链接”,之后就可以在“🌟重磅首发 - AI歌手全明星💕”页面中通过粘贴zip链接来使用您喜欢的AI歌手模型啦!\n
[手机端📱](https://g-app-center-40055665-0593-xqmmjg6.openxlab.space)查看 滔滔AI精选模型
"""
gr.Markdown(md, elem_id="leaderboard_markdown")
gr.Dataframe(
headers=[
"排序",
"AI歌手名/AI Singer",
"模型zip链接/Link to Model Zip File",
"训练素材时长/Duration of Training Dataset(min)",
"训练epoch数/Epoch",
"模型贡献者/Model Contributor",
],
datatype=[
"str",
"markdown",
"str",
"number",
"number",
"str",
],
value=arena_table_vals,
elem_id="arena_leaderboard_dataframe",
height=800,
column_widths=[50, 100, 205, 95, 95, 95],
wrap=True,
)
gr.Markdown(pic_markdown)
gr.Markdown("###### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。请自觉合规使用此程序,程序开发者不负有任何责任。</center>")
gr.HTML('''
<div class="footer">
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
</p>
</div>
''')
app.queue(max_size=40, api_open=False)
app.launch(max_threads=400, show_error=True) |