LangChain-ChatGLM / chatllm.py
thomas-yanxin
update
dc18ab0
raw
history blame
5.53 kB
import os
from typing import Dict, List, Optional, Tuple, Union
import torch
from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from transformers import AutoModel, AutoTokenizer
os.environ["TOKENIZERS_PARALLELISM"] = "false"
DEVICE = "cuda"
DEVICE_ID = "0"
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
def torch_gc():
if torch.cuda.is_available():
with torch.cuda.device(CUDA_DEVICE):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
# transformer.word_embeddings 占用1层
# transformer.final_layernorm 和 lm_head 占用1层
# transformer.layers 占用 28 层
# 总共30层分配到num_gpus张卡上
num_trans_layers = 28
per_gpu_layers = 30 / num_gpus
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
# windows下 model.device 会被设置成 transformer.word_embeddings.device
# linux下 model.device 会被设置成 lm_head.device
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
device_map = {'transformer.word_embeddings': 0,
'transformer.final_layernorm': 0, 'lm_head': 0}
used = 2
gpu_target = 0
for i in range(num_trans_layers):
if used >= per_gpu_layers:
gpu_target += 1
used = 0
assert gpu_target < num_gpus
device_map[f'transformer.layers.{i}'] = gpu_target
used += 1
return device_map
class ChatLLM(LLM):
max_token: int = 10000
temperature: float = 0.1
top_p = 0.9
history = []
tokenizer: object = None
model: object = None
def __init__(self):
super().__init__()
@property
def _llm_type(self) -> str:
return "ChatLLM"
def _call(self,
prompt: str,
stop: Optional[List[str]] = None) -> str:
if self.model == 'Minimax':
import requests
group_id = os.getenv('group_id')
api_key = os.getenv('api_key')
url = f'https://api.minimax.chat/v1/text/chatcompletion?GroupId={group_id}'
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
request_body = {
"model": "abab5-chat",
"tokens_to_generate": 512,
'messages': []
}
for i in self.history:
h_input = i[0]
h_reply = i[1]
request_body['messages'].append({
"sender_type": "USER",
"text": h_input
})
request_body['messages'].append({"sender_type": "BOT", "text": h_reply})
request_body['messages'].append({"sender_type": "USER", "text": prompt})
resp = requests.post(url, headers=headers, json=request_body)
response = resp.json()['reply']
# 将当次的ai回复内容加入messages
request_body['messages'].append({"sender_type": "BOT", "text": response})
self.history.append((prompt, response))
else:
response, _ = self.model.chat(
self.tokenizer,
prompt,
history=self.history,
max_length=self.max_token,
temperature=self.temperature,
)
torch_gc()
if stop is not None:
response = enforce_stop_tokens(response, stop)
self.history = self.history+[[None, response]]
return response
def load_model(self,
model_name_or_path: str = "THUDM/chatglm-6b-int4",
llm_device=DEVICE,
device_map: Optional[Dict[str, int]] = None,
**kwargs):
self.tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path,
trust_remote_code=True
)
if torch.cuda.is_available() and llm_device.lower().startswith("cuda"):
# 根据当前设备GPU数量决定是否进行多卡部署
num_gpus = torch.cuda.device_count()
if num_gpus < 2 and device_map is None:
self.model = (
AutoModel.from_pretrained(
model_name_or_path,
trust_remote_code=True,
**kwargs)
.half()
.cuda()
)
else:
from accelerate import dispatch_model
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True, **kwargs).half()
# 可传入device_map自定义每张卡的部署情况
if device_map is None:
device_map = auto_configure_device_map(num_gpus)
self.model = dispatch_model(model, device_map=device_map)
else:
self.model = (
AutoModel.from_pretrained(
model_name_or_path,
trust_remote_code=True)
.float()
.to(llm_device)
)
self.model = self.model.eval()