Spaces:
Running
Running
import os | |
import traceback,gradio as gr | |
import logging | |
from tools.i18n.i18n import I18nAuto | |
i18n = I18nAuto() | |
logger = logging.getLogger(__name__) | |
import librosa,ffmpeg | |
import soundfile as sf | |
import torch | |
import sys | |
from mdxnet import MDXNetDereverb | |
from vr import AudioPre, AudioPreDeEcho | |
weight_uvr5_root = "tools/uvr5/uvr5_weights" | |
uvr5_names = [] | |
for name in os.listdir(weight_uvr5_root): | |
if name.endswith(".pth") or "onnx" in name: | |
uvr5_names.append(name.replace(".pth", "")) | |
device=sys.argv[1] | |
is_half=eval(sys.argv[2]) | |
webui_port_uvr5=int(sys.argv[3]) | |
is_share=eval(sys.argv[4]) | |
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0): | |
infos = [] | |
try: | |
inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
save_root_vocal = ( | |
save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
) | |
save_root_ins = ( | |
save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
) | |
is_hp3 = "HP3" in model_name | |
if model_name == "onnx_dereverb_By_FoxJoy": | |
pre_fun = MDXNetDereverb(15) | |
else: | |
func = AudioPre if "DeEcho" not in model_name else AudioPreDeEcho | |
pre_fun = func( | |
agg=int(agg), | |
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"), | |
device=device, | |
is_half=is_half, | |
) | |
if inp_root != "": | |
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)] | |
else: | |
paths = [path.name for path in paths] | |
for path in paths: | |
inp_path = os.path.join(inp_root, path) | |
if(os.path.isfile(inp_path)==False):continue | |
need_reformat = 1 | |
done = 0 | |
try: | |
info = ffmpeg.probe(inp_path, cmd="ffprobe") | |
if ( | |
info["streams"][0]["channels"] == 2 | |
and info["streams"][0]["sample_rate"] == "44100" | |
): | |
need_reformat = 0 | |
pre_fun._path_audio_( | |
inp_path, save_root_ins, save_root_vocal, format0,is_hp3 | |
) | |
done = 1 | |
except: | |
need_reformat = 1 | |
traceback.print_exc() | |
if need_reformat == 1: | |
tmp_path = "%s/%s.reformatted.wav" % ( | |
os.path.join(os.environ["TEMP"]), | |
os.path.basename(inp_path), | |
) | |
os.system( | |
"ffmpeg -i %s -vn -acodec pcm_s16le -ac 2 -ar 44100 %s -y" | |
% (inp_path, tmp_path) | |
) | |
inp_path = tmp_path | |
try: | |
if done == 0: | |
pre_fun._path_audio_( | |
inp_path, save_root_ins, save_root_vocal, format0,is_hp3 | |
) | |
infos.append("%s->Success" % (os.path.basename(inp_path))) | |
yield "\n".join(infos) | |
except: | |
infos.append( | |
"%s->%s" % (os.path.basename(inp_path), traceback.format_exc()) | |
) | |
yield "\n".join(infos) | |
except: | |
infos.append(traceback.format_exc()) | |
yield "\n".join(infos) | |
finally: | |
try: | |
if model_name == "onnx_dereverb_By_FoxJoy": | |
del pre_fun.pred.model | |
del pre_fun.pred.model_ | |
else: | |
del pre_fun.model | |
del pre_fun | |
except: | |
traceback.print_exc() | |
print("clean_empty_cache") | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
yield "\n".join(infos) | |
with gr.Blocks(title="UVR5 WebUI") as app: | |
gr.Markdown( | |
value= | |
i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.") | |
) | |
with gr.Tabs(): | |
with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")): | |
with gr.Group(): | |
gr.Markdown( | |
value=i18n( | |
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点; <br>2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型; <br> 3、去混响、去延迟模型(by FoxJoy):<br> (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br> (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;<br>2、MDX-Net-Dereverb模型挺慢的;<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。" | |
) | |
) | |
with gr.Row(): | |
with gr.Column(): | |
dir_wav_input = gr.Textbox( | |
label=i18n("输入待处理音频文件夹路径"), | |
placeholder="C:\\Users\\Desktop\\todo-songs", | |
) | |
wav_inputs = gr.File( | |
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") | |
) | |
with gr.Column(): | |
model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names) | |
agg = gr.Slider( | |
minimum=0, | |
maximum=20, | |
step=1, | |
label=i18n("人声提取激进程度"), | |
value=10, | |
interactive=True, | |
visible=False, # 先不开放调整 | |
) | |
opt_vocal_root = gr.Textbox( | |
label=i18n("指定输出主人声文件夹"), value="output/uvr5_opt" | |
) | |
opt_ins_root = gr.Textbox( | |
label=i18n("指定输出非主人声文件夹"), value="output/uvr5_opt" | |
) | |
format0 = gr.Radio( | |
label=i18n("导出文件格式"), | |
choices=["wav", "flac", "mp3", "m4a"], | |
value="flac", | |
interactive=True, | |
) | |
but2 = gr.Button(i18n("转换"), variant="primary") | |
vc_output4 = gr.Textbox(label=i18n("输出信息")) | |
but2.click( | |
uvr, | |
[ | |
model_choose, | |
dir_wav_input, | |
opt_vocal_root, | |
wav_inputs, | |
opt_ins_root, | |
agg, | |
format0, | |
], | |
[vc_output4], | |
api_name="uvr_convert", | |
) | |
app.queue(concurrency_count=511, max_size=1022).launch( | |
server_name="0.0.0.0", | |
inbrowser=True, | |
share=is_share, | |
server_port=webui_port_uvr5, | |
quiet=True, | |
) | |