Spaces:
Running
Running
File size: 5,777 Bytes
051c72a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import re
import json
import numpy as np
def get_hparams_from_file(config_path):
with open(config_path, "r", encoding="utf-8") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
return hparams
class HParams:
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = HParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()
def string_to_bits(string, pad_len=8):
# Convert each character to its ASCII value
ascii_values = [ord(char) for char in string]
# Convert ASCII values to binary representation
binary_values = [bin(value)[2:].zfill(8) for value in ascii_values]
# Convert binary strings to integer arrays
bit_arrays = [[int(bit) for bit in binary] for binary in binary_values]
# Convert list of arrays to NumPy array
numpy_array = np.array(bit_arrays)
numpy_array_full = np.zeros((pad_len, 8), dtype=numpy_array.dtype)
numpy_array_full[:, 2] = 1
max_len = min(pad_len, len(numpy_array))
numpy_array_full[:max_len] = numpy_array[:max_len]
return numpy_array_full
def bits_to_string(bits_array):
# Convert each row of the array to a binary string
binary_values = [''.join(str(bit) for bit in row) for row in bits_array]
# Convert binary strings to ASCII values
ascii_values = [int(binary, 2) for binary in binary_values]
# Convert ASCII values to characters
output_string = ''.join(chr(value) for value in ascii_values)
return output_string
def split_sentence(text, min_len=10, language_str='[EN]'):
if language_str in ['EN']:
sentences = split_sentences_latin(text, min_len=min_len)
else:
sentences = split_sentences_zh(text, min_len=min_len)
return sentences
def split_sentences_latin(text, min_len=10):
"""Split Long sentences into list of short ones
Args:
str: Input sentences.
Returns:
List[str]: list of output sentences.
"""
# deal with dirty sentences
text = re.sub('[。!?;]', '.', text)
text = re.sub('[,]', ',', text)
text = re.sub('[“”]', '"', text)
text = re.sub('[‘’]', "'", text)
text = re.sub(r"[\<\>\(\)\[\]\"\«\»]+", "", text)
text = re.sub('[\n\t ]+', ' ', text)
text = re.sub('([,.!?;])', r'\1 $#!', text)
# split
sentences = [s.strip() for s in text.split('$#!')]
if len(sentences[-1]) == 0: del sentences[-1]
new_sentences = []
new_sent = []
count_len = 0
for ind, sent in enumerate(sentences):
# print(sent)
new_sent.append(sent)
count_len += len(sent.split(" "))
if count_len > min_len or ind == len(sentences) - 1:
count_len = 0
new_sentences.append(' '.join(new_sent))
new_sent = []
return merge_short_sentences_latin(new_sentences)
def merge_short_sentences_latin(sens):
"""Avoid short sentences by merging them with the following sentence.
Args:
List[str]: list of input sentences.
Returns:
List[str]: list of output sentences.
"""
sens_out = []
for s in sens:
# If the previous sentence is too short, merge them with
# the current sentence.
if len(sens_out) > 0 and len(sens_out[-1].split(" ")) <= 2:
sens_out[-1] = sens_out[-1] + " " + s
else:
sens_out.append(s)
try:
if len(sens_out[-1].split(" ")) <= 2:
sens_out[-2] = sens_out[-2] + " " + sens_out[-1]
sens_out.pop(-1)
except:
pass
return sens_out
def split_sentences_zh(text, min_len=10):
text = re.sub('[。!?;]', '.', text)
text = re.sub('[,]', ',', text)
# 将文本中的换行符、空格和制表符替换为空格
text = re.sub('[\n\t ]+', ' ', text)
# 在标点符号后添加一个空格
text = re.sub('([,.!?;])', r'\1 $#!', text)
# 分隔句子并去除前后空格
# sentences = [s.strip() for s in re.split('(。|!|?|;)', text)]
sentences = [s.strip() for s in text.split('$#!')]
if len(sentences[-1]) == 0: del sentences[-1]
new_sentences = []
new_sent = []
count_len = 0
for ind, sent in enumerate(sentences):
new_sent.append(sent)
count_len += len(sent)
if count_len > min_len or ind == len(sentences) - 1:
count_len = 0
new_sentences.append(' '.join(new_sent))
new_sent = []
return merge_short_sentences_zh(new_sentences)
def merge_short_sentences_zh(sens):
# return sens
"""Avoid short sentences by merging them with the following sentence.
Args:
List[str]: list of input sentences.
Returns:
List[str]: list of output sentences.
"""
sens_out = []
for s in sens:
# If the previous sentense is too short, merge them with
# the current sentence.
if len(sens_out) > 0 and len(sens_out[-1]) <= 2:
sens_out[-1] = sens_out[-1] + " " + s
else:
sens_out.append(s)
try:
if len(sens_out[-1]) <= 2:
sens_out[-2] = sens_out[-2] + " " + sens_out[-1]
sens_out.pop(-1)
except:
pass
return sens_out
|