Diffutoon / examples /image_synthesis /sd_text_to_image.py
kevinwang676's picture
Upload folder using huggingface_hub
fb4fac3 verified
raw
history blame
3.21 kB
from diffsynth import ModelManager, SDImagePipeline, ControlNetConfigUnit, download_models
import torch
# Download models (automatically)
# `models/stable_diffusion/aingdiffusion_v12.safetensors`: [link](https://civitai.com/api/download/models/229575?type=Model&format=SafeTensor&size=full&fp=fp16)
# `models/ControlNet/control_v11p_sd15_lineart.pth`: [link](https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11p_sd15_lineart.pth)
# `models/ControlNet/control_v11f1e_sd15_tile.pth`: [link](https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile.pth)
# `models/Annotators/sk_model.pth`: [link](https://huggingface.co/lllyasviel/Annotators/resolve/main/sk_model.pth)
# `models/Annotators/sk_model2.pth`: [link](https://huggingface.co/lllyasviel/Annotators/resolve/main/sk_model2.pth)
download_models(["AingDiffusion_v12", "ControlNet_v11p_sd15_lineart", "ControlNet_v11f1e_sd15_tile"])
# Load models
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=[
"models/stable_diffusion/aingdiffusion_v12.safetensors",
"models/ControlNet/control_v11f1e_sd15_tile.pth",
"models/ControlNet/control_v11p_sd15_lineart.pth"
])
pipe = SDImagePipeline.from_model_manager(
model_manager,
[
ControlNetConfigUnit(
processor_id="tile",
model_path=rf"models/ControlNet/control_v11f1e_sd15_tile.pth",
scale=0.5
),
ControlNetConfigUnit(
processor_id="lineart",
model_path=rf"models/ControlNet/control_v11p_sd15_lineart.pth",
scale=0.7
),
]
)
prompt = "masterpiece, best quality, solo, long hair, wavy hair, silver hair, blue eyes, blue dress, medium breasts, dress, underwater, air bubble, floating hair, refraction, portrait,"
negative_prompt = "worst quality, low quality, monochrome, zombie, interlocked fingers, Aissist, cleavage, nsfw,"
torch.manual_seed(0)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
cfg_scale=7.5, clip_skip=1,
height=512, width=512, num_inference_steps=80,
)
image.save("512.jpg")
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
cfg_scale=7.5, clip_skip=1,
input_image=image.resize((1024, 1024)), controlnet_image=image.resize((1024, 1024)),
height=1024, width=1024, num_inference_steps=40, denoising_strength=0.7,
)
image.save("1024.jpg")
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
cfg_scale=7.5, clip_skip=1,
input_image=image.resize((2048, 2048)), controlnet_image=image.resize((2048, 2048)),
height=2048, width=2048, num_inference_steps=20, denoising_strength=0.7,
)
image.save("2048.jpg")
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
cfg_scale=7.5, clip_skip=1,
input_image=image.resize((4096, 4096)), controlnet_image=image.resize((4096, 4096)),
height=4096, width=4096, num_inference_steps=10, denoising_strength=0.5,
tiled=True, tile_size=128, tile_stride=64
)
image.save("4096.jpg")