Diffutoon / examples /train /kolors /train_kolors_lora.py
kevinwang676's picture
Upload folder using huggingface_hub
fb4fac3 verified
raw
history blame
11.2 kB
from diffsynth import KolorsImagePipeline, load_state_dict, ChatGLMModel, SDXLUNet, SDXLVAEEncoder
from peft import LoraConfig, inject_adapter_in_model
from torchvision import transforms
from PIL import Image
import lightning as pl
import pandas as pd
import torch, os, argparse
os.environ["TOKENIZERS_PARALLELISM"] = "True"
class TextImageDataset(torch.utils.data.Dataset):
def __init__(self, dataset_path, steps_per_epoch=10000, height=1024, width=1024, center_crop=True, random_flip=False):
self.steps_per_epoch = steps_per_epoch
metadata = pd.read_csv(os.path.join(dataset_path, "train/metadata.csv"))
self.path = [os.path.join(dataset_path, "train", file_name) for file_name in metadata["file_name"]]
self.text = metadata["text"].to_list()
self.image_processor = transforms.Compose(
[
transforms.Resize(max(height, width), interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop((height, width)) if center_crop else transforms.RandomCrop((height, width)),
transforms.RandomHorizontalFlip() if random_flip else transforms.Lambda(lambda x: x),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __getitem__(self, index):
data_id = torch.randint(0, len(self.path), (1,))[0]
data_id = (data_id + index) % len(self.path) # For fixed seed.
text = self.text[data_id]
image = Image.open(self.path[data_id]).convert("RGB")
image = self.image_processor(image)
return {"text": text, "image": image}
def __len__(self):
return self.steps_per_epoch
def load_model_from_diffsynth(ModelClass, model_kwargs, state_dict_path, torch_dtype, device):
model = ModelClass(**model_kwargs).to(dtype=torch_dtype, device=device)
state_dict = load_state_dict(state_dict_path, torch_dtype=torch_dtype)
model.load_state_dict(model.state_dict_converter().from_diffusers(state_dict))
return model
def load_model_from_transformers(ModelClass, model_kwargs, state_dict_path, torch_dtype, device):
model = ModelClass.from_pretrained(state_dict_path, torch_dtype=torch_dtype)
model = model.to(dtype=torch_dtype, device=device)
return model
class LightningModel(pl.LightningModule):
def __init__(
self,
pretrained_unet_path, pretrained_text_encoder_path, pretrained_fp16_vae_path,
torch_dtype=torch.float16, learning_rate=1e-4, lora_rank=4, lora_alpha=4, use_gradient_checkpointing=True
):
super().__init__()
# Load models
self.pipe = KolorsImagePipeline(device=self.device, torch_dtype=torch_dtype)
self.pipe.text_encoder = load_model_from_transformers(ChatGLMModel, {}, pretrained_text_encoder_path, torch_dtype, self.device)
self.pipe.unet = load_model_from_diffsynth(SDXLUNet, {"is_kolors": True}, pretrained_unet_path, torch_dtype, self.device)
self.pipe.vae_encoder = load_model_from_diffsynth(SDXLVAEEncoder, {}, pretrained_fp16_vae_path, torch_dtype, self.device)
# Freeze parameters
self.pipe.text_encoder.requires_grad_(False)
self.pipe.unet.requires_grad_(False)
self.pipe.vae_encoder.requires_grad_(False)
self.pipe.text_encoder.eval()
self.pipe.unet.train()
self.pipe.vae_encoder.eval()
# Add LoRA to UNet
lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_alpha,
init_lora_weights="gaussian",
target_modules=["to_q", "to_k", "to_v", "to_out"],
)
self.pipe.unet = inject_adapter_in_model(lora_config, self.pipe.unet)
for param in self.pipe.unet.parameters():
# Upcast LoRA parameters into fp32
if param.requires_grad:
param.data = param.to(torch.float32)
# Set other parameters
self.learning_rate = learning_rate
self.use_gradient_checkpointing = use_gradient_checkpointing
self.pipe.scheduler.set_timesteps(1100)
def training_step(self, batch, batch_idx):
# Data
text, image = batch["text"], batch["image"]
# Prepare input parameters
self.pipe.device = self.device
add_prompt_emb, prompt_emb = self.pipe.prompter.encode_prompt(
self.pipe.text_encoder, text, clip_skip=2, device=self.device, positive=True,
)
height, width = image.shape[-2:]
latents = self.pipe.vae_encoder(image.to(self.device))
noise = torch.randn_like(latents)
timestep = torch.randint(0, 1100, (1,), device=self.device)[0]
add_time_id = torch.tensor([height, width, 0, 0, height, width], device=self.device)
noisy_latents = self.pipe.scheduler.add_noise(latents, noise, timestep)
# Compute loss
noise_pred = self.pipe.unet(
noisy_latents, timestep, prompt_emb, add_time_id, add_prompt_emb,
use_gradient_checkpointing=self.use_gradient_checkpointing
)
loss = torch.nn.functional.mse_loss(noise_pred, noise)
# Record log
self.log("train_loss", loss, prog_bar=True)
return loss
def configure_optimizers(self):
trainable_modules = filter(lambda p: p.requires_grad, self.pipe.unet.parameters())
optimizer = torch.optim.AdamW(trainable_modules, lr=self.learning_rate)
return optimizer
def on_save_checkpoint(self, checkpoint):
checkpoint.clear()
trainable_param_names = list(filter(lambda named_param: named_param[1].requires_grad, self.pipe.unet.named_parameters()))
trainable_param_names = set([named_param[0] for named_param in trainable_param_names])
state_dict = self.pipe.unet.state_dict()
for name, param in state_dict.items():
if name in trainable_param_names:
checkpoint[name] = param
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_unet_path",
type=str,
default=None,
required=True,
help="Path to pretrained model (UNet). For example, `models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors`.",
)
parser.add_argument(
"--pretrained_text_encoder_path",
type=str,
default=None,
required=True,
help="Path to pretrained model (Text Encoder). For example, `models/kolors/Kolors/text_encoder`.",
)
parser.add_argument(
"--pretrained_fp16_vae_path",
type=str,
default=None,
required=True,
help="Path to pretrained model (VAE). For example, `models/kolors/Kolors/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors`.",
)
parser.add_argument(
"--dataset_path",
type=str,
default=None,
required=True,
help="The path of the Dataset.",
)
parser.add_argument(
"--output_path",
type=str,
default="./",
help="Path to save the model.",
)
parser.add_argument(
"--steps_per_epoch",
type=int,
default=500,
help="Number of steps per epoch.",
)
parser.add_argument(
"--height",
type=int,
default=1024,
help="Image height.",
)
parser.add_argument(
"--width",
type=int,
default=1024,
help="Image width.",
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--random_flip",
default=False,
action="store_true",
help="Whether to randomly flip images horizontally",
)
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.",
)
parser.add_argument(
"--precision",
type=str,
default="16-mixed",
choices=["32", "16", "16-mixed"],
help="Training precision",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Learning rate.",
)
parser.add_argument(
"--lora_rank",
type=int,
default=4,
help="The dimension of the LoRA update matrices.",
)
parser.add_argument(
"--lora_alpha",
type=float,
default=4.0,
help="The weight of the LoRA update matrices.",
)
parser.add_argument(
"--use_gradient_checkpointing",
default=False,
action="store_true",
help="Whether to use gradient checkpointing.",
)
parser.add_argument(
"--accumulate_grad_batches",
type=int,
default=1,
help="The number of batches in gradient accumulation.",
)
parser.add_argument(
"--training_strategy",
type=str,
default="auto",
choices=["auto", "deepspeed_stage_1", "deepspeed_stage_2", "deepspeed_stage_3"],
help="Training strategy",
)
parser.add_argument(
"--max_epochs",
type=int,
default=1,
help="Number of epochs.",
)
args = parser.parse_args()
return args
if __name__ == '__main__':
# args
args = parse_args()
# dataset and data loader
dataset = TextImageDataset(
args.dataset_path,
steps_per_epoch=args.steps_per_epoch * args.batch_size,
height=args.height,
width=args.width,
center_crop=args.center_crop,
random_flip=args.random_flip
)
train_loader = torch.utils.data.DataLoader(
dataset,
shuffle=True,
batch_size=args.batch_size,
num_workers=args.dataloader_num_workers
)
# model
model = LightningModel(
args.pretrained_unet_path,
args.pretrained_text_encoder_path,
args.pretrained_fp16_vae_path,
torch_dtype=torch.float32 if args.precision == "32" else torch.float16,
learning_rate=args.learning_rate,
lora_rank=args.lora_rank,
lora_alpha=args.lora_alpha,
use_gradient_checkpointing=args.use_gradient_checkpointing
)
# train
trainer = pl.Trainer(
max_epochs=args.max_epochs,
accelerator="gpu",
devices="auto",
precision=args.precision,
strategy=args.training_strategy,
default_root_dir=args.output_path,
accumulate_grad_batches=args.accumulate_grad_batches,
callbacks=[pl.pytorch.callbacks.ModelCheckpoint(save_top_k=-1)]
)
trainer.fit(model=model, train_dataloaders=train_loader)