Spaces:
Runtime error
Runtime error
from diffsynth import ModelManager, HunyuanDiTImagePipeline | |
from peft import LoraConfig, inject_adapter_in_model | |
from torchvision import transforms | |
from PIL import Image | |
import lightning as pl | |
import pandas as pd | |
import torch, os, argparse | |
os.environ["TOKENIZERS_PARALLELISM"] = "True" | |
class TextImageDataset(torch.utils.data.Dataset): | |
def __init__(self, dataset_path, steps_per_epoch=10000, height=1024, width=1024, center_crop=True, random_flip=False): | |
self.steps_per_epoch = steps_per_epoch | |
metadata = pd.read_csv(os.path.join(dataset_path, "train/metadata.csv")) | |
self.path = [os.path.join(dataset_path, "train", file_name) for file_name in metadata["file_name"]] | |
self.text = metadata["text"].to_list() | |
self.image_processor = transforms.Compose( | |
[ | |
transforms.Resize(max(height, width), interpolation=transforms.InterpolationMode.BILINEAR), | |
transforms.CenterCrop((height, width)) if center_crop else transforms.RandomCrop((height, width)), | |
transforms.RandomHorizontalFlip() if random_flip else transforms.Lambda(lambda x: x), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
] | |
) | |
def __getitem__(self, index): | |
data_id = torch.randint(0, len(self.path), (1,))[0] | |
data_id = (data_id + index) % len(self.path) # For fixed seed. | |
text = self.text[data_id] | |
image = Image.open(self.path[data_id]).convert("RGB") | |
image = self.image_processor(image) | |
return {"text": text, "image": image} | |
def __len__(self): | |
return self.steps_per_epoch | |
class LightningModel(pl.LightningModule): | |
def __init__(self, torch_dtype=torch.float16, learning_rate=1e-4, pretrained_weights=[], lora_rank=4, lora_alpha=4, use_gradient_checkpointing=True): | |
super().__init__() | |
# Load models | |
model_manager = ModelManager(torch_dtype=torch_dtype, device=self.device) | |
model_manager.load_models(pretrained_weights) | |
self.pipe = HunyuanDiTImagePipeline.from_model_manager(model_manager) | |
# Freeze parameters | |
self.pipe.text_encoder.requires_grad_(False) | |
self.pipe.text_encoder_t5.requires_grad_(False) | |
self.pipe.dit.requires_grad_(False) | |
self.pipe.vae_decoder.requires_grad_(False) | |
self.pipe.vae_encoder.requires_grad_(False) | |
self.pipe.text_encoder.eval() | |
self.pipe.text_encoder_t5.eval() | |
self.pipe.dit.train() | |
self.pipe.vae_decoder.eval() | |
self.pipe.vae_encoder.eval() | |
# Add LoRA to DiT | |
lora_config = LoraConfig( | |
r=lora_rank, | |
lora_alpha=lora_alpha, | |
init_lora_weights="gaussian", | |
target_modules=["to_q", "to_k", "to_v", "to_out"], | |
) | |
self.pipe.dit = inject_adapter_in_model(lora_config, self.pipe.dit) | |
for param in self.pipe.dit.parameters(): | |
# Upcast LoRA parameters into fp32 | |
if param.requires_grad: | |
param.data = param.to(torch.float32) | |
# Set other parameters | |
self.learning_rate = learning_rate | |
self.use_gradient_checkpointing = use_gradient_checkpointing | |
def training_step(self, batch, batch_idx): | |
# Data | |
text, image = batch["text"], batch["image"] | |
# Prepare input parameters | |
self.pipe.device = self.device | |
prompt_emb, attention_mask, prompt_emb_t5, attention_mask_t5 = self.pipe.prompter.encode_prompt( | |
self.pipe.text_encoder, self.pipe.text_encoder_t5, text, positive=True, device=self.device | |
) | |
latents = self.pipe.vae_encoder(image.to(dtype=self.pipe.torch_dtype, device=self.device)) | |
noise = torch.randn_like(latents) | |
timestep = torch.randint(0, 1000, (1,), device=self.device) | |
extra_input = self.pipe.prepare_extra_input(image.shape[-2], image.shape[-1], batch_size=latents.shape[0]) | |
noisy_latents = self.pipe.scheduler.add_noise(latents, noise, timestep) | |
training_target = self.pipe.scheduler.training_target(latents, noise, timestep) | |
# Compute loss | |
noise_pred = self.pipe.dit( | |
noisy_latents, | |
prompt_emb, prompt_emb_t5, attention_mask, attention_mask_t5, | |
timestep, | |
**extra_input, | |
use_gradient_checkpointing=self.use_gradient_checkpointing | |
) | |
loss = torch.nn.functional.mse_loss(noise_pred, training_target) | |
# Record log | |
self.log("train_loss", loss, prog_bar=True) | |
return loss | |
def configure_optimizers(self): | |
trainable_modules = filter(lambda p: p.requires_grad, self.pipe.dit.parameters()) | |
optimizer = torch.optim.AdamW(trainable_modules, lr=self.learning_rate) | |
return optimizer | |
def on_save_checkpoint(self, checkpoint): | |
checkpoint.clear() | |
trainable_param_names = list(filter(lambda named_param: named_param[1].requires_grad, self.pipe.dit.named_parameters())) | |
trainable_param_names = set([named_param[0] for named_param in trainable_param_names]) | |
state_dict = self.pipe.dit.state_dict() | |
for name, param in state_dict.items(): | |
if name in trainable_param_names: | |
checkpoint[name] = param | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
parser.add_argument( | |
"--pretrained_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model. For example, `./HunyuanDiT/t2i`.", | |
) | |
parser.add_argument( | |
"--dataset_path", | |
type=str, | |
default=None, | |
required=True, | |
help="The path of the Dataset.", | |
) | |
parser.add_argument( | |
"--output_path", | |
type=str, | |
default="./", | |
help="Path to save the model.", | |
) | |
parser.add_argument( | |
"--steps_per_epoch", | |
type=int, | |
default=500, | |
help="Number of steps per epoch.", | |
) | |
parser.add_argument( | |
"--height", | |
type=int, | |
default=1024, | |
help="Image height.", | |
) | |
parser.add_argument( | |
"--width", | |
type=int, | |
default=1024, | |
help="Image width.", | |
) | |
parser.add_argument( | |
"--center_crop", | |
default=False, | |
action="store_true", | |
help=( | |
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
" cropped. The images will be resized to the resolution first before cropping." | |
), | |
) | |
parser.add_argument( | |
"--random_flip", | |
default=False, | |
action="store_true", | |
help="Whether to randomly flip images horizontally", | |
) | |
parser.add_argument( | |
"--batch_size", | |
type=int, | |
default=1, | |
help="Batch size (per device) for the training dataloader.", | |
) | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=0, | |
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.", | |
) | |
parser.add_argument( | |
"--precision", | |
type=str, | |
default="16-mixed", | |
choices=["32", "16", "16-mixed"], | |
help="Training precision", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=1e-4, | |
help="Learning rate.", | |
) | |
parser.add_argument( | |
"--lora_rank", | |
type=int, | |
default=4, | |
help="The dimension of the LoRA update matrices.", | |
) | |
parser.add_argument( | |
"--lora_alpha", | |
type=float, | |
default=4.0, | |
help="The weight of the LoRA update matrices.", | |
) | |
parser.add_argument( | |
"--use_gradient_checkpointing", | |
default=False, | |
action="store_true", | |
help="Whether to use gradient checkpointing.", | |
) | |
parser.add_argument( | |
"--accumulate_grad_batches", | |
type=int, | |
default=1, | |
help="The number of batches in gradient accumulation.", | |
) | |
parser.add_argument( | |
"--training_strategy", | |
type=str, | |
default="auto", | |
choices=["auto", "deepspeed_stage_1", "deepspeed_stage_2", "deepspeed_stage_3"], | |
help="Training strategy", | |
) | |
parser.add_argument( | |
"--max_epochs", | |
type=int, | |
default=1, | |
help="Number of epochs.", | |
) | |
args = parser.parse_args() | |
return args | |
if __name__ == '__main__': | |
# args | |
args = parse_args() | |
# dataset and data loader | |
dataset = TextImageDataset( | |
args.dataset_path, | |
steps_per_epoch=args.steps_per_epoch * args.batch_size, | |
height=args.height, | |
width=args.width, | |
center_crop=args.center_crop, | |
random_flip=args.random_flip | |
) | |
train_loader = torch.utils.data.DataLoader( | |
dataset, | |
shuffle=True, | |
batch_size=args.batch_size, | |
num_workers=args.dataloader_num_workers | |
) | |
# model | |
model = LightningModel( | |
pretrained_weights=[ | |
os.path.join(args.pretrained_path, "clip_text_encoder/pytorch_model.bin"), | |
os.path.join(args.pretrained_path, "mt5/pytorch_model.bin"), | |
os.path.join(args.pretrained_path, "model/pytorch_model_ema.pt"), | |
os.path.join(args.pretrained_path, "sdxl-vae-fp16-fix/diffusion_pytorch_model.bin"), | |
], | |
torch_dtype=torch.float32 if args.precision == "32" else torch.float16, | |
learning_rate=args.learning_rate, | |
lora_rank=args.lora_rank, | |
lora_alpha=args.lora_alpha, | |
use_gradient_checkpointing=args.use_gradient_checkpointing | |
) | |
# train | |
trainer = pl.Trainer( | |
max_epochs=args.max_epochs, | |
accelerator="gpu", | |
devices="auto", | |
precision=args.precision, | |
strategy=args.training_strategy, | |
default_root_dir=args.output_path, | |
accumulate_grad_batches=args.accumulate_grad_batches, | |
callbacks=[pl.pytorch.callbacks.ModelCheckpoint(save_top_k=-1)] | |
) | |
trainer.fit(model=model, train_dataloaders=train_loader) | |