Diffutoon / pages /2_Video_Creator.py
kevinwang676's picture
Upload folder using huggingface_hub
fb4fac3 verified
raw
history blame
10.5 kB
import streamlit as st
st.set_page_config(layout="wide")
from diffsynth import SDVideoPipelineRunner
import os
import numpy as np
def load_model_list(folder):
file_list = os.listdir(folder)
file_list = [i for i in file_list if i.endswith(".safetensors") or i.endswith(".pth") or i.endswith(".ckpt")]
file_list = sorted(file_list)
return file_list
def match_processor_id(model_name, supported_processor_id_list):
sorted_processor_id = [i[1] for i in sorted([(-len(i), i) for i in supported_processor_id_list])]
for processor_id in sorted_processor_id:
if processor_id in model_name:
return supported_processor_id_list.index(processor_id) + 1
return 0
config = {
"models": {
"model_list": [],
"textual_inversion_folder": "models/textual_inversion",
"device": "cuda",
"lora_alphas": [],
"controlnet_units": []
},
"data": {
"input_frames": None,
"controlnet_frames": [],
"output_folder": "output",
"fps": 60
},
"pipeline": {
"seed": 0,
"pipeline_inputs": {}
}
}
with st.expander("Model", expanded=True):
stable_diffusion_ckpt = st.selectbox("Stable Diffusion", ["None"] + load_model_list("models/stable_diffusion"))
if stable_diffusion_ckpt != "None":
config["models"]["model_list"].append(os.path.join("models/stable_diffusion", stable_diffusion_ckpt))
animatediff_ckpt = st.selectbox("AnimateDiff", ["None"] + load_model_list("models/AnimateDiff"))
if animatediff_ckpt != "None":
config["models"]["model_list"].append(os.path.join("models/AnimateDiff", animatediff_ckpt))
column_lora, column_lora_alpha = st.columns([2, 1])
with column_lora:
sd_lora_ckpt = st.selectbox("LoRA", ["None"] + load_model_list("models/lora"))
with column_lora_alpha:
lora_alpha = st.slider("LoRA Alpha", min_value=-4.0, max_value=4.0, value=1.0, step=0.1)
if sd_lora_ckpt != "None":
config["models"]["model_list"].append(os.path.join("models/lora", sd_lora_ckpt))
config["models"]["lora_alphas"].append(lora_alpha)
with st.expander("Data", expanded=True):
with st.container(border=True):
input_video = st.text_input("Input Video File Path (e.g., data/your_video.mp4)", value="")
column_height, column_width, column_start_frame_index, column_end_frame_index = st.columns([2, 2, 1, 1])
with column_height:
height = st.select_slider("Height", options=[256, 512, 768, 1024, 1536, 2048], value=1024)
with column_width:
width = st.select_slider("Width", options=[256, 512, 768, 1024, 1536, 2048], value=1024)
with column_start_frame_index:
start_frame_id = st.number_input("Start Frame id", value=0)
with column_end_frame_index:
end_frame_id = st.number_input("End Frame id", value=16)
if input_video != "":
config["data"]["input_frames"] = {
"video_file": input_video,
"image_folder": None,
"height": height,
"width": width,
"start_frame_id": start_frame_id,
"end_frame_id": end_frame_id
}
with st.container(border=True):
output_video = st.text_input("Output Video File Path (e.g., data/a_folder_to_save_something)", value="output")
fps = st.number_input("FPS", value=60)
config["data"]["output_folder"] = output_video
config["data"]["fps"] = fps
with st.expander("ControlNet Units", expanded=True):
supported_processor_id_list = ["canny", "depth", "softedge", "lineart", "lineart_anime", "openpose", "tile"]
controlnet_units = st.tabs(["ControlNet Unit 0", "ControlNet Unit 1", "ControlNet Unit 2"])
for controlnet_id in range(len(controlnet_units)):
with controlnet_units[controlnet_id]:
controlnet_ckpt = st.selectbox("ControlNet", ["None"] + load_model_list("models/ControlNet"),
key=f"controlnet_ckpt_{controlnet_id}")
processor_id = st.selectbox("Processor", ["None"] + supported_processor_id_list,
index=match_processor_id(controlnet_ckpt, supported_processor_id_list),
disabled=controlnet_ckpt == "None", key=f"processor_id_{controlnet_id}")
controlnet_scale = st.slider("Scale", min_value=0.0, max_value=1.0, step=0.01, value=0.5,
disabled=controlnet_ckpt == "None", key=f"controlnet_scale_{controlnet_id}")
use_input_video_as_controlnet_input = st.checkbox("Use input video as ControlNet input", value=True,
disabled=controlnet_ckpt == "None",
key=f"use_input_video_as_controlnet_input_{controlnet_id}")
if not use_input_video_as_controlnet_input:
controlnet_input_video = st.text_input("ControlNet Input Video File Path", value="",
disabled=controlnet_ckpt == "None", key=f"controlnet_input_video_{controlnet_id}")
column_height, column_width, column_start_frame_index, column_end_frame_index = st.columns([2, 2, 1, 1])
with column_height:
height = st.select_slider("Height", options=[256, 512, 768, 1024, 1536, 2048], value=1024,
disabled=controlnet_ckpt == "None", key=f"controlnet_height_{controlnet_id}")
with column_width:
width = st.select_slider("Width", options=[256, 512, 768, 1024, 1536, 2048], value=1024,
disabled=controlnet_ckpt == "None", key=f"controlnet_width_{controlnet_id}")
with column_start_frame_index:
start_frame_id = st.number_input("Start Frame id", value=0,
disabled=controlnet_ckpt == "None", key=f"controlnet_start_frame_id_{controlnet_id}")
with column_end_frame_index:
end_frame_id = st.number_input("End Frame id", value=16,
disabled=controlnet_ckpt == "None", key=f"controlnet_end_frame_id_{controlnet_id}")
if input_video != "":
config["data"]["input_video"] = {
"video_file": input_video,
"image_folder": None,
"height": height,
"width": width,
"start_frame_id": start_frame_id,
"end_frame_id": end_frame_id
}
if controlnet_ckpt != "None":
config["models"]["model_list"].append(os.path.join("models/ControlNet", controlnet_ckpt))
config["models"]["controlnet_units"].append({
"processor_id": processor_id,
"model_path": os.path.join("models/ControlNet", controlnet_ckpt),
"scale": controlnet_scale,
})
if use_input_video_as_controlnet_input:
config["data"]["controlnet_frames"].append(config["data"]["input_frames"])
else:
config["data"]["controlnet_frames"].append({
"video_file": input_video,
"image_folder": None,
"height": height,
"width": width,
"start_frame_id": start_frame_id,
"end_frame_id": end_frame_id
})
with st.container(border=True):
with st.expander("Seed", expanded=True):
use_fixed_seed = st.checkbox("Use fixed seed", value=False)
if use_fixed_seed:
seed = st.number_input("Random seed", min_value=0, max_value=10**9, step=1, value=0)
else:
seed = np.random.randint(0, 10**9)
with st.expander("Textual Guidance", expanded=True):
prompt = st.text_area("Positive prompt")
negative_prompt = st.text_area("Negative prompt")
column_cfg_scale, column_clip_skip = st.columns(2)
with column_cfg_scale:
cfg_scale = st.slider("Classifier-free guidance scale", min_value=1.0, max_value=10.0, value=7.0)
with column_clip_skip:
clip_skip = st.slider("Clip Skip", min_value=1, max_value=4, value=1)
with st.expander("Denoising", expanded=True):
column_num_inference_steps, column_denoising_strength = st.columns(2)
with column_num_inference_steps:
num_inference_steps = st.slider("Inference steps", min_value=1, max_value=100, value=10)
with column_denoising_strength:
denoising_strength = st.slider("Denoising strength", min_value=0.0, max_value=1.0, value=1.0)
with st.expander("Efficiency", expanded=False):
animatediff_batch_size = st.slider("Animatediff batch size (sliding window size)", min_value=1, max_value=32, value=16, step=1)
animatediff_stride = st.slider("Animatediff stride",
min_value=1,
max_value=max(2, animatediff_batch_size),
value=max(1, animatediff_batch_size // 2),
step=1)
unet_batch_size = st.slider("UNet batch size", min_value=1, max_value=32, value=1, step=1)
controlnet_batch_size = st.slider("ControlNet batch size", min_value=1, max_value=32, value=1, step=1)
cross_frame_attention = st.checkbox("Enable Cross-Frame Attention", value=False)
config["pipeline"]["seed"] = seed
config["pipeline"]["pipeline_inputs"] = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"cfg_scale": cfg_scale,
"clip_skip": clip_skip,
"denoising_strength": denoising_strength,
"num_inference_steps": num_inference_steps,
"animatediff_batch_size": animatediff_batch_size,
"animatediff_stride": animatediff_stride,
"unet_batch_size": unet_batch_size,
"controlnet_batch_size": controlnet_batch_size,
"cross_frame_attention": cross_frame_attention,
}
run_button = st.button("☢️Run☢️", type="primary")
if run_button:
SDVideoPipelineRunner(in_streamlit=True).run(config)