Diffutoon / pages /1_Image_Creator.py
kevinwang676's picture
Upload folder using huggingface_hub
fb4fac3 verified
raw
history blame
12.3 kB
import torch, os, io
import numpy as np
from PIL import Image
import streamlit as st
st.set_page_config(layout="wide")
from streamlit_drawable_canvas import st_canvas
from diffsynth.models import ModelManager
from diffsynth.pipelines import SDImagePipeline, SDXLImagePipeline, SD3ImagePipeline, HunyuanDiTImagePipeline
from diffsynth.data.video import crop_and_resize
config = {
"Stable Diffusion": {
"model_folder": "models/stable_diffusion",
"pipeline_class": SDImagePipeline,
"fixed_parameters": {}
},
"Stable Diffusion XL": {
"model_folder": "models/stable_diffusion_xl",
"pipeline_class": SDXLImagePipeline,
"fixed_parameters": {}
},
"Stable Diffusion 3": {
"model_folder": "models/stable_diffusion_3",
"pipeline_class": SD3ImagePipeline,
"fixed_parameters": {}
},
"Stable Diffusion XL Turbo": {
"model_folder": "models/stable_diffusion_xl_turbo",
"pipeline_class": SDXLImagePipeline,
"fixed_parameters": {
"negative_prompt": "",
"cfg_scale": 1.0,
"num_inference_steps": 1,
"height": 512,
"width": 512,
}
},
"HunyuanDiT": {
"model_folder": "models/HunyuanDiT",
"pipeline_class": HunyuanDiTImagePipeline,
"fixed_parameters": {
"height": 1024,
"width": 1024,
}
},
}
def load_model_list(model_type):
folder = config[model_type]["model_folder"]
file_list = [i for i in os.listdir(folder) if i.endswith(".safetensors")]
if model_type == "HunyuanDiT":
file_list += [i for i in os.listdir(folder) if os.path.isdir(os.path.join(folder, i))]
file_list = sorted(file_list)
return file_list
def release_model():
if "model_manager" in st.session_state:
st.session_state["model_manager"].to("cpu")
del st.session_state["loaded_model_path"]
del st.session_state["model_manager"]
del st.session_state["pipeline"]
torch.cuda.empty_cache()
def load_model(model_type, model_path):
model_manager = ModelManager()
if model_type == "HunyuanDiT":
model_manager.load_models([
os.path.join(model_path, "clip_text_encoder/pytorch_model.bin"),
os.path.join(model_path, "mt5/pytorch_model.bin"),
os.path.join(model_path, "model/pytorch_model_ema.pt"),
os.path.join(model_path, "sdxl-vae-fp16-fix/diffusion_pytorch_model.bin"),
])
else:
model_manager.load_model(model_path)
pipeline = config[model_type]["pipeline_class"].from_model_manager(model_manager)
st.session_state.loaded_model_path = model_path
st.session_state.model_manager = model_manager
st.session_state.pipeline = pipeline
return model_manager, pipeline
def use_output_image_as_input(update=True):
# Search for input image
output_image_id = 0
selected_output_image = None
while True:
if f"use_output_as_input_{output_image_id}" not in st.session_state:
break
if st.session_state[f"use_output_as_input_{output_image_id}"]:
selected_output_image = st.session_state["output_images"][output_image_id]
break
output_image_id += 1
if update and selected_output_image is not None:
st.session_state["input_image"] = selected_output_image
return selected_output_image is not None
def apply_stroke_to_image(stroke_image, image):
image = np.array(image.convert("RGB")).astype(np.float32)
height, width, _ = image.shape
stroke_image = np.array(Image.fromarray(stroke_image).resize((width, height))).astype(np.float32)
weight = stroke_image[:, :, -1:] / 255
stroke_image = stroke_image[:, :, :-1]
image = stroke_image * weight + image * (1 - weight)
image = np.clip(image, 0, 255).astype(np.uint8)
image = Image.fromarray(image)
return image
@st.cache_data
def image2bits(image):
image_byte = io.BytesIO()
image.save(image_byte, format="PNG")
image_byte = image_byte.getvalue()
return image_byte
def show_output_image(image):
st.image(image, use_column_width="always")
st.button("Use it as input image", key=f"use_output_as_input_{image_id}")
st.download_button("Download", data=image2bits(image), file_name="image.png", mime="image/png", key=f"download_output_{image_id}")
column_input, column_output = st.columns(2)
with st.sidebar:
# Select a model
with st.expander("Model", expanded=True):
model_type = st.selectbox("Model type", [model_type_ for model_type_ in config])
fixed_parameters = config[model_type]["fixed_parameters"]
model_path_list = ["None"] + load_model_list(model_type)
model_path = st.selectbox("Model path", model_path_list)
# Load the model
if model_path == "None":
# No models are selected. Release VRAM.
st.markdown("No models are selected.")
release_model()
else:
# A model is selected.
model_path = os.path.join(config[model_type]["model_folder"], model_path)
if st.session_state.get("loaded_model_path", "") != model_path:
# The loaded model is not the selected model. Reload it.
st.markdown(f"Loading model at {model_path}.")
st.markdown("Please wait a moment...")
release_model()
model_manager, pipeline = load_model(model_type, model_path)
st.markdown("Done.")
else:
# The loaded model is not the selected model. Fetch it from `st.session_state`.
st.markdown(f"Loading model at {model_path}.")
st.markdown("Please wait a moment...")
model_manager, pipeline = st.session_state.model_manager, st.session_state.pipeline
st.markdown("Done.")
# Show parameters
with st.expander("Prompt", expanded=True):
prompt = st.text_area("Positive prompt")
if "negative_prompt" in fixed_parameters:
negative_prompt = fixed_parameters["negative_prompt"]
else:
negative_prompt = st.text_area("Negative prompt")
if "cfg_scale" in fixed_parameters:
cfg_scale = fixed_parameters["cfg_scale"]
else:
cfg_scale = st.slider("Classifier-free guidance scale", min_value=1.0, max_value=10.0, value=7.5)
with st.expander("Image", expanded=True):
if "num_inference_steps" in fixed_parameters:
num_inference_steps = fixed_parameters["num_inference_steps"]
else:
num_inference_steps = st.slider("Inference steps", min_value=1, max_value=100, value=20)
if "height" in fixed_parameters:
height = fixed_parameters["height"]
else:
height = st.select_slider("Height", options=[256, 512, 768, 1024, 2048], value=512)
if "width" in fixed_parameters:
width = fixed_parameters["width"]
else:
width = st.select_slider("Width", options=[256, 512, 768, 1024, 2048], value=512)
num_images = st.number_input("Number of images", value=2)
use_fixed_seed = st.checkbox("Use fixed seed", value=False)
if use_fixed_seed:
seed = st.number_input("Random seed", min_value=0, max_value=10**9, step=1, value=0)
# Other fixed parameters
denoising_strength = 1.0
repetition = 1
# Show input image
with column_input:
with st.expander("Input image (Optional)", expanded=True):
with st.container(border=True):
column_white_board, column_upload_image = st.columns([1, 2])
with column_white_board:
create_white_board = st.button("Create white board")
delete_input_image = st.button("Delete input image")
with column_upload_image:
upload_image = st.file_uploader("Upload image", type=["png", "jpg"], key="upload_image")
if upload_image is not None:
st.session_state["input_image"] = crop_and_resize(Image.open(upload_image), height, width)
elif create_white_board:
st.session_state["input_image"] = Image.fromarray(np.ones((height, width, 3), dtype=np.uint8) * 255)
else:
use_output_image_as_input()
if delete_input_image and "input_image" in st.session_state:
del st.session_state.input_image
if delete_input_image and "upload_image" in st.session_state:
del st.session_state.upload_image
input_image = st.session_state.get("input_image", None)
if input_image is not None:
with st.container(border=True):
column_drawing_mode, column_color_1, column_color_2 = st.columns([4, 1, 1])
with column_drawing_mode:
drawing_mode = st.radio("Drawing tool", ["transform", "freedraw", "line", "rect"], horizontal=True, index=1)
with column_color_1:
stroke_color = st.color_picker("Stroke color")
with column_color_2:
fill_color = st.color_picker("Fill color")
stroke_width = st.slider("Stroke width", min_value=1, max_value=50, value=10)
with st.container(border=True):
denoising_strength = st.slider("Denoising strength", min_value=0.0, max_value=1.0, value=0.7)
repetition = st.slider("Repetition", min_value=1, max_value=8, value=1)
with st.container(border=True):
input_width, input_height = input_image.size
canvas_result = st_canvas(
fill_color=fill_color,
stroke_width=stroke_width,
stroke_color=stroke_color,
background_color="rgba(255, 255, 255, 0)",
background_image=input_image,
update_streamlit=True,
height=int(512 / input_width * input_height),
width=512,
drawing_mode=drawing_mode,
key="canvas"
)
with column_output:
run_button = st.button("Generate image", type="primary")
auto_update = st.checkbox("Auto update", value=False)
num_image_columns = st.slider("Columns", min_value=1, max_value=8, value=2)
image_columns = st.columns(num_image_columns)
# Run
if (run_button or auto_update) and model_path != "None":
if input_image is not None:
input_image = input_image.resize((width, height))
if canvas_result.image_data is not None:
input_image = apply_stroke_to_image(canvas_result.image_data, input_image)
output_images = []
for image_id in range(num_images * repetition):
if use_fixed_seed:
torch.manual_seed(seed + image_id)
else:
torch.manual_seed(np.random.randint(0, 10**9))
if image_id >= num_images:
input_image = output_images[image_id - num_images]
with image_columns[image_id % num_image_columns]:
progress_bar_st = st.progress(0.0)
image = pipeline(
prompt, negative_prompt=negative_prompt,
cfg_scale=cfg_scale, num_inference_steps=num_inference_steps,
height=height, width=width,
input_image=input_image, denoising_strength=denoising_strength,
progress_bar_st=progress_bar_st
)
output_images.append(image)
progress_bar_st.progress(1.0)
show_output_image(image)
st.session_state["output_images"] = output_images
elif "output_images" in st.session_state:
for image_id in range(len(st.session_state.output_images)):
with image_columns[image_id % num_image_columns]:
image = st.session_state.output_images[image_id]
progress_bar = st.progress(1.0)
show_output_image(image)
if "upload_image" in st.session_state and use_output_image_as_input(update=False):
st.markdown("If you want to use an output image as input image, please delete the uploaded image manually.")