Diffutoon / examples /ExVideo /ExVideo_ema.py
kevinwang676's picture
Upload folder using huggingface_hub
fb4fac3 verified
raw
history blame
2.16 kB
import torch, os, argparse
from safetensors.torch import save_file
def load_pl_state_dict(file_path):
print(f"loading {file_path}")
state_dict = torch.load(file_path, map_location="cpu")
trainable_param_names = set(state_dict["trainable_param_names"])
if "module" in state_dict:
state_dict = state_dict["module"]
if "state_dict" in state_dict:
state_dict = state_dict["state_dict"]
state_dict_ = {}
for name, param in state_dict.items():
if name.startswith("_forward_module."):
name = name[len("_forward_module."):]
if name.startswith("unet."):
name = name[len("unet."):]
if name in trainable_param_names:
state_dict_[name] = param
return state_dict_
def ckpt_to_epochs(ckpt_name):
return int(ckpt_name.split("=")[1].split("-")[0])
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--output_path",
type=str,
default="./",
help="Path to save the model.",
)
parser.add_argument(
"--gamma",
type=float,
default=0.9,
help="Gamma in EMA.",
)
args = parser.parse_args()
return args
if __name__ == '__main__':
# args
args = parse_args()
folder = args.output_path
gamma = args.gamma
# EMA
ckpt_list = sorted([(ckpt_to_epochs(ckpt_name), ckpt_name) for ckpt_name in os.listdir(folder) if os.path.isdir(f"{folder}/{ckpt_name}")])
state_dict_ema = None
for epochs, ckpt_name in ckpt_list:
state_dict = load_pl_state_dict(f"{folder}/{ckpt_name}/checkpoint/mp_rank_00_model_states.pt")
if state_dict_ema is None:
state_dict_ema = {name: param.float() for name, param in state_dict.items()}
else:
for name, param in state_dict.items():
state_dict_ema[name] = state_dict_ema[name] * gamma + param.float() * (1 - gamma)
save_path = ckpt_name.replace(".ckpt", "-ema.safetensors")
print(f"save to {folder}/{save_path}")
save_file(state_dict_ema, f"{folder}/{save_path}")