Diffutoon / diffsynth /pipelines /stable_video_diffusion.py
kevinwang676's picture
Upload folder using huggingface_hub
fb4fac3 verified
raw
history blame
11.7 kB
from ..models import ModelManager, SVDImageEncoder, SVDUNet, SVDVAEEncoder, SVDVAEDecoder
from ..schedulers import ContinuousODEScheduler
import torch
from tqdm import tqdm
from PIL import Image
import numpy as np
from einops import rearrange, repeat
class SVDVideoPipeline(torch.nn.Module):
def __init__(self, device="cuda", torch_dtype=torch.float16):
super().__init__()
self.scheduler = ContinuousODEScheduler()
self.device = device
self.torch_dtype = torch_dtype
# models
self.image_encoder: SVDImageEncoder = None
self.unet: SVDUNet = None
self.vae_encoder: SVDVAEEncoder = None
self.vae_decoder: SVDVAEDecoder = None
def fetch_main_models(self, model_manager: ModelManager):
self.image_encoder = model_manager.image_encoder
self.unet = model_manager.unet
self.vae_encoder = model_manager.vae_encoder
self.vae_decoder = model_manager.vae_decoder
@staticmethod
def from_model_manager(model_manager: ModelManager, **kwargs):
pipe = SVDVideoPipeline(device=model_manager.device, torch_dtype=model_manager.torch_dtype)
pipe.fetch_main_models(model_manager)
return pipe
def preprocess_image(self, image):
image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0)
return image
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0]
image = image.cpu().permute(1, 2, 0).numpy()
image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8"))
return image
def encode_image_with_clip(self, image):
image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype)
image = SVDCLIPImageProcessor().resize_with_antialiasing(image, (224, 224))
image = (image + 1.0) / 2.0
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).reshape(1, 3, 1, 1).to(device=self.device, dtype=self.torch_dtype)
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).reshape(1, 3, 1, 1).to(device=self.device, dtype=self.torch_dtype)
image = (image - mean) / std
image_emb = self.image_encoder(image)
return image_emb
def encode_image_with_vae(self, image, noise_aug_strength):
image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype)
noise = torch.randn(image.shape, device="cpu", dtype=self.torch_dtype).to(self.device)
image = image + noise_aug_strength * noise
image_emb = self.vae_encoder(image) / self.vae_encoder.scaling_factor
return image_emb
def encode_video_with_vae(self, video):
video = torch.concat([self.preprocess_image(frame) for frame in video], dim=0)
video = rearrange(video, "T C H W -> 1 C T H W")
video = video.to(device=self.device, dtype=self.torch_dtype)
latents = self.vae_encoder.encode_video(video)
latents = rearrange(latents[0], "C T H W -> T C H W")
return latents
def tensor2video(self, frames):
frames = rearrange(frames, "C T H W -> T H W C")
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8)
frames = [Image.fromarray(frame) for frame in frames]
return frames
def calculate_noise_pred(
self,
latents,
timestep,
add_time_id,
cfg_scales,
image_emb_vae_posi, image_emb_clip_posi,
image_emb_vae_nega, image_emb_clip_nega
):
# Positive side
noise_pred_posi = self.unet(
torch.cat([latents, image_emb_vae_posi], dim=1),
timestep, image_emb_clip_posi, add_time_id
)
# Negative side
noise_pred_nega = self.unet(
torch.cat([latents, image_emb_vae_nega], dim=1),
timestep, image_emb_clip_nega, add_time_id
)
# Classifier-free guidance
noise_pred = noise_pred_nega + cfg_scales * (noise_pred_posi - noise_pred_nega)
return noise_pred
def post_process_latents(self, latents, post_normalize=True, contrast_enhance_scale=1.0):
if post_normalize:
mean, std = latents.mean(), latents.std()
latents = (latents - latents.mean(dim=[1, 2, 3], keepdim=True)) / latents.std(dim=[1, 2, 3], keepdim=True) * std + mean
latents = latents * contrast_enhance_scale
return latents
@torch.no_grad()
def __call__(
self,
input_image=None,
input_video=None,
mask_frames=[],
mask_frame_ids=[],
min_cfg_scale=1.0,
max_cfg_scale=3.0,
denoising_strength=1.0,
num_frames=25,
height=576,
width=1024,
fps=7,
motion_bucket_id=127,
noise_aug_strength=0.02,
num_inference_steps=20,
post_normalize=True,
contrast_enhance_scale=1.2,
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength)
# Prepare latent tensors
noise = torch.randn((num_frames, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype).to(self.device)
if denoising_strength == 1.0:
latents = noise.clone()
else:
latents = self.encode_video_with_vae(input_video)
latents = self.scheduler.add_noise(latents, noise, self.scheduler.timesteps[0])
# Prepare mask frames
if len(mask_frames) > 0:
mask_latents = self.encode_video_with_vae(mask_frames)
# Encode image
image_emb_clip_posi = self.encode_image_with_clip(input_image)
image_emb_clip_nega = torch.zeros_like(image_emb_clip_posi)
image_emb_vae_posi = repeat(self.encode_image_with_vae(input_image, noise_aug_strength), "B C H W -> (B T) C H W", T=num_frames)
image_emb_vae_nega = torch.zeros_like(image_emb_vae_posi)
# Prepare classifier-free guidance
cfg_scales = torch.linspace(min_cfg_scale, max_cfg_scale, num_frames)
cfg_scales = cfg_scales.reshape(num_frames, 1, 1, 1).to(device=self.device, dtype=self.torch_dtype)
# Prepare positional id
add_time_id = torch.tensor([[fps-1, motion_bucket_id, noise_aug_strength]], device=self.device)
# Denoise
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
# Mask frames
for frame_id, mask_frame_id in enumerate(mask_frame_ids):
latents[mask_frame_id] = self.scheduler.add_noise(mask_latents[frame_id], noise[mask_frame_id], timestep)
# Fetch model output
noise_pred = self.calculate_noise_pred(
latents, timestep, add_time_id, cfg_scales,
image_emb_vae_posi, image_emb_clip_posi, image_emb_vae_nega, image_emb_clip_nega
)
# Forward Euler
latents = self.scheduler.step(noise_pred, timestep, latents)
# Update progress bar
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
latents = self.post_process_latents(latents, post_normalize=post_normalize, contrast_enhance_scale=contrast_enhance_scale)
video = self.vae_decoder.decode_video(latents, progress_bar=progress_bar_cmd)
video = self.tensor2video(video)
return video
class SVDCLIPImageProcessor:
def __init__(self):
pass
def resize_with_antialiasing(self, input, size, interpolation="bicubic", align_corners=True):
h, w = input.shape[-2:]
factors = (h / size[0], w / size[1])
# First, we have to determine sigma
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
sigmas = (
max((factors[0] - 1.0) / 2.0, 0.001),
max((factors[1] - 1.0) / 2.0, 0.001),
)
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
# Make sure it is odd
if (ks[0] % 2) == 0:
ks = ks[0] + 1, ks[1]
if (ks[1] % 2) == 0:
ks = ks[0], ks[1] + 1
input = self._gaussian_blur2d(input, ks, sigmas)
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
return output
def _compute_padding(self, kernel_size):
"""Compute padding tuple."""
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
if len(kernel_size) < 2:
raise AssertionError(kernel_size)
computed = [k - 1 for k in kernel_size]
# for even kernels we need to do asymmetric padding :(
out_padding = 2 * len(kernel_size) * [0]
for i in range(len(kernel_size)):
computed_tmp = computed[-(i + 1)]
pad_front = computed_tmp // 2
pad_rear = computed_tmp - pad_front
out_padding[2 * i + 0] = pad_front
out_padding[2 * i + 1] = pad_rear
return out_padding
def _filter2d(self, input, kernel):
# prepare kernel
b, c, h, w = input.shape
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
height, width = tmp_kernel.shape[-2:]
padding_shape: list[int] = self._compute_padding([height, width])
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
# kernel and input tensor reshape to align element-wise or batch-wise params
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
# convolve the tensor with the kernel.
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
out = output.view(b, c, h, w)
return out
def _gaussian(self, window_size: int, sigma):
if isinstance(sigma, float):
sigma = torch.tensor([[sigma]])
batch_size = sigma.shape[0]
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
if window_size % 2 == 0:
x = x + 0.5
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
return gauss / gauss.sum(-1, keepdim=True)
def _gaussian_blur2d(self, input, kernel_size, sigma):
if isinstance(sigma, tuple):
sigma = torch.tensor([sigma], dtype=input.dtype)
else:
sigma = sigma.to(dtype=input.dtype)
ky, kx = int(kernel_size[0]), int(kernel_size[1])
bs = sigma.shape[0]
kernel_x = self._gaussian(kx, sigma[:, 1].view(bs, 1))
kernel_y = self._gaussian(ky, sigma[:, 0].view(bs, 1))
out_x = self._filter2d(input, kernel_x[..., None, :])
out = self._filter2d(out_x, kernel_y[..., None])
return out