Diffutoon / diffsynth /pipelines /stable_diffusion_xl_video.py
kevinwang676's picture
Upload folder using huggingface_hub
fb4fac3 verified
raw
history blame
7.62 kB
from ..models import ModelManager, SDXLTextEncoder, SDXLTextEncoder2, SDXLUNet, SDXLVAEDecoder, SDXLVAEEncoder, SDXLMotionModel
from .dancer import lets_dance_xl
# TODO: SDXL ControlNet
from ..prompts import SDXLPrompter
from ..schedulers import EnhancedDDIMScheduler
import torch
from tqdm import tqdm
from PIL import Image
import numpy as np
class SDXLVideoPipeline(torch.nn.Module):
def __init__(self, device="cuda", torch_dtype=torch.float16, use_animatediff=True):
super().__init__()
self.scheduler = EnhancedDDIMScheduler(beta_schedule="linear" if use_animatediff else "scaled_linear")
self.prompter = SDXLPrompter()
self.device = device
self.torch_dtype = torch_dtype
# models
self.text_encoder: SDXLTextEncoder = None
self.text_encoder_2: SDXLTextEncoder2 = None
self.unet: SDXLUNet = None
self.vae_decoder: SDXLVAEDecoder = None
self.vae_encoder: SDXLVAEEncoder = None
# TODO: SDXL ControlNet
self.motion_modules: SDXLMotionModel = None
def fetch_main_models(self, model_manager: ModelManager):
self.text_encoder = model_manager.text_encoder
self.text_encoder_2 = model_manager.text_encoder_2
self.unet = model_manager.unet
self.vae_decoder = model_manager.vae_decoder
self.vae_encoder = model_manager.vae_encoder
def fetch_controlnet_models(self, model_manager: ModelManager, **kwargs):
# TODO: SDXL ControlNet
pass
def fetch_motion_modules(self, model_manager: ModelManager):
if "motion_modules_xl" in model_manager.model:
self.motion_modules = model_manager.motion_modules_xl
def fetch_prompter(self, model_manager: ModelManager):
self.prompter.load_from_model_manager(model_manager)
@staticmethod
def from_model_manager(model_manager: ModelManager, controlnet_config_units = [], **kwargs):
pipe = SDXLVideoPipeline(
device=model_manager.device,
torch_dtype=model_manager.torch_dtype,
use_animatediff="motion_modules_xl" in model_manager.model
)
pipe.fetch_main_models(model_manager)
pipe.fetch_motion_modules(model_manager)
pipe.fetch_prompter(model_manager)
pipe.fetch_controlnet_models(model_manager, controlnet_config_units=controlnet_config_units)
return pipe
def preprocess_image(self, image):
image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0)
return image
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0]
image = image.cpu().permute(1, 2, 0).numpy()
image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8"))
return image
def decode_images(self, latents, tiled=False, tile_size=64, tile_stride=32):
images = [
self.decode_image(latents[frame_id: frame_id+1], tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
for frame_id in range(latents.shape[0])
]
return images
def encode_images(self, processed_images, tiled=False, tile_size=64, tile_stride=32):
latents = []
for image in processed_images:
image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype)
latent = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).cpu()
latents.append(latent)
latents = torch.concat(latents, dim=0)
return latents
@torch.no_grad()
def __call__(
self,
prompt,
negative_prompt="",
cfg_scale=7.5,
clip_skip=1,
clip_skip_2=2,
num_frames=None,
input_frames=None,
controlnet_frames=None,
denoising_strength=1.0,
height=512,
width=512,
num_inference_steps=20,
animatediff_batch_size = 16,
animatediff_stride = 8,
unet_batch_size = 1,
controlnet_batch_size = 1,
cross_frame_attention = False,
smoother=None,
smoother_progress_ids=[],
vram_limit_level=0,
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength)
# Prepare latent tensors
if self.motion_modules is None:
noise = torch.randn((1, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype).repeat(num_frames, 1, 1, 1)
else:
noise = torch.randn((num_frames, 4, height//8, width//8), device="cuda", dtype=self.torch_dtype)
if input_frames is None or denoising_strength == 1.0:
latents = noise
else:
latents = self.encode_images(input_frames)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
# Encode prompts
add_prompt_emb_posi, prompt_emb_posi = self.prompter.encode_prompt(
self.text_encoder,
self.text_encoder_2,
prompt,
clip_skip=clip_skip, clip_skip_2=clip_skip_2,
device=self.device,
positive=True,
)
if cfg_scale != 1.0:
add_prompt_emb_nega, prompt_emb_nega = self.prompter.encode_prompt(
self.text_encoder,
self.text_encoder_2,
negative_prompt,
clip_skip=clip_skip, clip_skip_2=clip_skip_2,
device=self.device,
positive=False,
)
# Prepare positional id
add_time_id = torch.tensor([height, width, 0, 0, height, width], device=self.device)
# Denoise
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = torch.IntTensor((timestep,))[0].to(self.device)
# Classifier-free guidance
noise_pred_posi = lets_dance_xl(
self.unet, motion_modules=self.motion_modules, controlnet=None,
sample=latents, add_time_id=add_time_id, add_text_embeds=add_prompt_emb_posi,
timestep=timestep, encoder_hidden_states=prompt_emb_posi, controlnet_frames=controlnet_frames,
cross_frame_attention=cross_frame_attention,
device=self.device, vram_limit_level=vram_limit_level
)
if cfg_scale != 1.0:
noise_pred_nega = lets_dance_xl(
self.unet, motion_modules=self.motion_modules, controlnet=None,
sample=latents, add_time_id=add_time_id, add_text_embeds=add_prompt_emb_nega,
timestep=timestep, encoder_hidden_states=prompt_emb_nega, controlnet_frames=controlnet_frames,
cross_frame_attention=cross_frame_attention,
device=self.device, vram_limit_level=vram_limit_level
)
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
else:
noise_pred = noise_pred_posi
latents = self.scheduler.step(noise_pred, timestep, latents)
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
image = self.decode_images(latents.to(torch.float32))
return image