Spaces:
Runtime error
Runtime error
from ..models import ModelManager, SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder, SDIpAdapter, IpAdapterCLIPImageEmbedder | |
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator | |
from ..prompts import SDPrompter | |
from ..schedulers import EnhancedDDIMScheduler | |
from .dancer import lets_dance | |
from typing import List | |
import torch | |
from tqdm import tqdm | |
from PIL import Image | |
import numpy as np | |
class SDImagePipeline(torch.nn.Module): | |
def __init__(self, device="cuda", torch_dtype=torch.float16): | |
super().__init__() | |
self.scheduler = EnhancedDDIMScheduler() | |
self.prompter = SDPrompter() | |
self.device = device | |
self.torch_dtype = torch_dtype | |
# models | |
self.text_encoder: SDTextEncoder = None | |
self.unet: SDUNet = None | |
self.vae_decoder: SDVAEDecoder = None | |
self.vae_encoder: SDVAEEncoder = None | |
self.controlnet: MultiControlNetManager = None | |
self.ipadapter_image_encoder: IpAdapterCLIPImageEmbedder = None | |
self.ipadapter: SDIpAdapter = None | |
def fetch_main_models(self, model_manager: ModelManager): | |
self.text_encoder = model_manager.text_encoder | |
self.unet = model_manager.unet | |
self.vae_decoder = model_manager.vae_decoder | |
self.vae_encoder = model_manager.vae_encoder | |
def fetch_controlnet_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[]): | |
controlnet_units = [] | |
for config in controlnet_config_units: | |
controlnet_unit = ControlNetUnit( | |
Annotator(config.processor_id, device=self.device), | |
model_manager.get_model_with_model_path(config.model_path), | |
config.scale | |
) | |
controlnet_units.append(controlnet_unit) | |
self.controlnet = MultiControlNetManager(controlnet_units) | |
def fetch_ipadapter(self, model_manager: ModelManager): | |
if "ipadapter" in model_manager.model: | |
self.ipadapter = model_manager.ipadapter | |
if "ipadapter_image_encoder" in model_manager.model: | |
self.ipadapter_image_encoder = model_manager.ipadapter_image_encoder | |
def fetch_prompter(self, model_manager: ModelManager): | |
self.prompter.load_from_model_manager(model_manager) | |
def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[]): | |
pipe = SDImagePipeline( | |
device=model_manager.device, | |
torch_dtype=model_manager.torch_dtype, | |
) | |
pipe.fetch_main_models(model_manager) | |
pipe.fetch_prompter(model_manager) | |
pipe.fetch_controlnet_models(model_manager, controlnet_config_units) | |
pipe.fetch_ipadapter(model_manager) | |
return pipe | |
def preprocess_image(self, image): | |
image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0) | |
return image | |
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): | |
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0] | |
image = image.cpu().permute(1, 2, 0).numpy() | |
image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) | |
return image | |
def __call__( | |
self, | |
prompt, | |
negative_prompt="", | |
cfg_scale=7.5, | |
clip_skip=1, | |
input_image=None, | |
ipadapter_images=None, | |
ipadapter_scale=1.0, | |
controlnet_image=None, | |
denoising_strength=1.0, | |
height=512, | |
width=512, | |
num_inference_steps=20, | |
tiled=False, | |
tile_size=64, | |
tile_stride=32, | |
progress_bar_cmd=tqdm, | |
progress_bar_st=None, | |
): | |
# Prepare scheduler | |
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) | |
# Prepare latent tensors | |
if input_image is not None: | |
image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) | |
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
noise = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype) | |
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) | |
else: | |
latents = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype) | |
# Encode prompts | |
prompt_emb_posi = self.prompter.encode_prompt(self.text_encoder, prompt, clip_skip=clip_skip, device=self.device, positive=True) | |
prompt_emb_nega = self.prompter.encode_prompt(self.text_encoder, negative_prompt, clip_skip=clip_skip, device=self.device, positive=False) | |
# IP-Adapter | |
if ipadapter_images is not None: | |
ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images) | |
ipadapter_kwargs_list_posi = self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale) | |
ipadapter_kwargs_list_nega = self.ipadapter(torch.zeros_like(ipadapter_image_encoding)) | |
else: | |
ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {}, {} | |
# Prepare ControlNets | |
if controlnet_image is not None: | |
controlnet_image = self.controlnet.process_image(controlnet_image).to(device=self.device, dtype=self.torch_dtype) | |
controlnet_image = controlnet_image.unsqueeze(1) | |
# Denoise | |
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
timestep = torch.IntTensor((timestep,))[0].to(self.device) | |
# Classifier-free guidance | |
noise_pred_posi = lets_dance( | |
self.unet, motion_modules=None, controlnet=self.controlnet, | |
sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_posi, controlnet_frames=controlnet_image, | |
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride, | |
ipadapter_kwargs_list=ipadapter_kwargs_list_posi, | |
device=self.device, vram_limit_level=0 | |
) | |
noise_pred_nega = lets_dance( | |
self.unet, motion_modules=None, controlnet=self.controlnet, | |
sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_nega, controlnet_frames=controlnet_image, | |
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride, | |
ipadapter_kwargs_list=ipadapter_kwargs_list_nega, | |
device=self.device, vram_limit_level=0 | |
) | |
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
# DDIM | |
latents = self.scheduler.step(noise_pred, timestep, latents) | |
# UI | |
if progress_bar_st is not None: | |
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) | |
# Decode image | |
image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
return image | |