Spaces:
Runtime error
Runtime error
File size: 12,103 Bytes
fb4fac3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
from ..models.hunyuan_dit import HunyuanDiT
from ..models.hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder
from ..models.sdxl_vae_encoder import SDXLVAEEncoder
from ..models.sdxl_vae_decoder import SDXLVAEDecoder
from ..models import ModelManager
from ..prompts import HunyuanDiTPrompter
from ..schedulers import EnhancedDDIMScheduler
import torch
from tqdm import tqdm
from PIL import Image
import numpy as np
class ImageSizeManager:
def __init__(self):
pass
def _to_tuple(self, x):
if isinstance(x, int):
return x, x
else:
return x
def get_fill_resize_and_crop(self, src, tgt):
th, tw = self._to_tuple(tgt)
h, w = self._to_tuple(src)
tr = th / tw # base 分辨率
r = h / w # 目标分辨率
# resize
if r > tr:
resize_height = th
resize_width = int(round(th / h * w))
else:
resize_width = tw
resize_height = int(round(tw / w * h)) # 根据base分辨率,将目标分辨率resize下来
crop_top = int(round((th - resize_height) / 2.0))
crop_left = int(round((tw - resize_width) / 2.0))
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
def get_meshgrid(self, start, *args):
if len(args) == 0:
# start is grid_size
num = self._to_tuple(start)
start = (0, 0)
stop = num
elif len(args) == 1:
# start is start, args[0] is stop, step is 1
start = self._to_tuple(start)
stop = self._to_tuple(args[0])
num = (stop[0] - start[0], stop[1] - start[1])
elif len(args) == 2:
# start is start, args[0] is stop, args[1] is num
start = self._to_tuple(start) # 左上角 eg: 12,0
stop = self._to_tuple(args[0]) # 右下角 eg: 20,32
num = self._to_tuple(args[1]) # 目标大小 eg: 32,124
else:
raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}")
grid_h = np.linspace(start[0], stop[0], num[0], endpoint=False, dtype=np.float32) # 12-20 中间差值32份 0-32 中间差值124份
grid_w = np.linspace(start[1], stop[1], num[1], endpoint=False, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0) # [2, W, H]
return grid
def get_2d_rotary_pos_embed(self, embed_dim, start, *args, use_real=True):
grid = self.get_meshgrid(start, *args) # [2, H, w]
grid = grid.reshape([2, 1, *grid.shape[1:]]) # 返回一个采样矩阵 分辨率与目标分辨率一致
pos_embed = self.get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
return pos_embed
def get_2d_rotary_pos_embed_from_grid(self, embed_dim, grid, use_real=False):
assert embed_dim % 4 == 0
# use half of dimensions to encode grid_h
emb_h = self.get_1d_rotary_pos_embed(embed_dim // 2, grid[0].reshape(-1), use_real=use_real) # (H*W, D/4)
emb_w = self.get_1d_rotary_pos_embed(embed_dim // 2, grid[1].reshape(-1), use_real=use_real) # (H*W, D/4)
if use_real:
cos = torch.cat([emb_h[0], emb_w[0]], dim=1) # (H*W, D/2)
sin = torch.cat([emb_h[1], emb_w[1]], dim=1) # (H*W, D/2)
return cos, sin
else:
emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D/2)
return emb
def get_1d_rotary_pos_embed(self, dim: int, pos, theta: float = 10000.0, use_real=False):
if isinstance(pos, int):
pos = np.arange(pos)
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) # [D/2]
t = torch.from_numpy(pos).to(freqs.device) # type: ignore # [S]
freqs = torch.outer(t, freqs).float() # type: ignore # [S, D/2]
if use_real:
freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D]
freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D]
return freqs_cos, freqs_sin
else:
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
return freqs_cis
def calc_rope(self, height, width):
patch_size = 2
head_size = 88
th = height // 8 // patch_size
tw = width // 8 // patch_size
base_size = 512 // 8 // patch_size
start, stop = self.get_fill_resize_and_crop((th, tw), base_size)
sub_args = [start, stop, (th, tw)]
rope = self.get_2d_rotary_pos_embed(head_size, *sub_args)
return rope
class HunyuanDiTImagePipeline(torch.nn.Module):
def __init__(self, device="cuda", torch_dtype=torch.float16):
super().__init__()
self.scheduler = EnhancedDDIMScheduler(prediction_type="v_prediction", beta_start=0.00085, beta_end=0.03)
self.prompter = HunyuanDiTPrompter()
self.device = device
self.torch_dtype = torch_dtype
self.image_size_manager = ImageSizeManager()
# models
self.text_encoder: HunyuanDiTCLIPTextEncoder = None
self.text_encoder_t5: HunyuanDiTT5TextEncoder = None
self.dit: HunyuanDiT = None
self.vae_decoder: SDXLVAEDecoder = None
self.vae_encoder: SDXLVAEEncoder = None
def fetch_main_models(self, model_manager: ModelManager):
self.text_encoder = model_manager.hunyuan_dit_clip_text_encoder
self.text_encoder_t5 = model_manager.hunyuan_dit_t5_text_encoder
self.dit = model_manager.hunyuan_dit
self.vae_decoder = model_manager.vae_decoder
self.vae_encoder = model_manager.vae_encoder
def fetch_prompter(self, model_manager: ModelManager):
self.prompter.load_from_model_manager(model_manager)
@staticmethod
def from_model_manager(model_manager: ModelManager):
pipe = HunyuanDiTImagePipeline(
device=model_manager.device,
torch_dtype=model_manager.torch_dtype,
)
pipe.fetch_main_models(model_manager)
pipe.fetch_prompter(model_manager)
return pipe
def preprocess_image(self, image):
image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0)
return image
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0]
image = image.cpu().permute(1, 2, 0).numpy()
image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8"))
return image
def prepare_extra_input(self, height=1024, width=1024, tiled=False, tile_size=64, tile_stride=32, batch_size=1):
if tiled:
height, width = tile_size * 16, tile_size * 16
image_meta_size = torch.as_tensor([width, height, width, height, 0, 0]).to(device=self.device)
freqs_cis_img = self.image_size_manager.calc_rope(height, width)
image_meta_size = torch.stack([image_meta_size] * batch_size)
return {
"size_emb": image_meta_size,
"freq_cis_img": (freqs_cis_img[0].to(dtype=self.torch_dtype, device=self.device), freqs_cis_img[1].to(dtype=self.torch_dtype, device=self.device)),
"tiled": tiled,
"tile_size": tile_size,
"tile_stride": tile_stride
}
@torch.no_grad()
def __call__(
self,
prompt,
negative_prompt="",
cfg_scale=7.5,
clip_skip=1,
clip_skip_2=1,
input_image=None,
reference_images=[],
reference_strengths=[0.4],
denoising_strength=1.0,
height=1024,
width=1024,
num_inference_steps=20,
tiled=False,
tile_size=64,
tile_stride=32,
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength)
# Prepare latent tensors
noise = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype)
if input_image is not None:
image = self.preprocess_image(input_image).to(device=self.device, dtype=torch.float32)
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(self.torch_dtype)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
else:
latents = noise.clone()
# Prepare reference latents
reference_latents = []
for reference_image in reference_images:
reference_image = self.preprocess_image(reference_image).to(device=self.device, dtype=self.torch_dtype)
reference_latents.append(self.vae_encoder(reference_image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(self.torch_dtype))
# Encode prompts
prompt_emb_posi, attention_mask_posi, prompt_emb_t5_posi, attention_mask_t5_posi = self.prompter.encode_prompt(
self.text_encoder,
self.text_encoder_t5,
prompt,
clip_skip=clip_skip,
clip_skip_2=clip_skip_2,
positive=True,
device=self.device
)
if cfg_scale != 1.0:
prompt_emb_nega, attention_mask_nega, prompt_emb_t5_nega, attention_mask_t5_nega = self.prompter.encode_prompt(
self.text_encoder,
self.text_encoder_t5,
negative_prompt,
clip_skip=clip_skip,
clip_skip_2=clip_skip_2,
positive=False,
device=self.device
)
# Prepare positional id
extra_input = self.prepare_extra_input(height, width, tiled, tile_size)
# Denoise
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = torch.tensor([timestep]).to(dtype=self.torch_dtype, device=self.device)
# In-context reference
for reference_latents_, reference_strength in zip(reference_latents, reference_strengths):
if progress_id < num_inference_steps * reference_strength:
noisy_reference_latents = self.scheduler.add_noise(reference_latents_, noise, self.scheduler.timesteps[progress_id])
self.dit(
noisy_reference_latents,
prompt_emb_posi, prompt_emb_t5_posi, attention_mask_posi, attention_mask_t5_posi,
timestep,
**extra_input,
to_cache=True
)
# Positive side
noise_pred_posi = self.dit(
latents,
prompt_emb_posi, prompt_emb_t5_posi, attention_mask_posi, attention_mask_t5_posi,
timestep,
**extra_input,
)
if cfg_scale != 1.0:
# Negative side
noise_pred_nega = self.dit(
latents,
prompt_emb_nega, prompt_emb_t5_nega, attention_mask_nega, attention_mask_t5_nega,
timestep,
**extra_input
)
# Classifier-free guidance
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
else:
noise_pred = noise_pred_posi
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
image = self.decode_image(latents.to(torch.float32), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return image
|