Spaces:
Runtime error
Runtime error
File size: 20,243 Bytes
fb4fac3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
from .runners import AccurateModeRunner, FastModeRunner, BalancedModeRunner, InterpolationModeRunner, InterpolationModeSingleFrameRunner
from .data import VideoData, get_video_fps, save_video, search_for_images
import os
import gradio as gr
def check_input_for_blending(video_guide, video_guide_folder, video_style, video_style_folder):
frames_guide = VideoData(video_guide, video_guide_folder)
frames_style = VideoData(video_style, video_style_folder)
message = ""
if len(frames_guide) < len(frames_style):
message += f"The number of frames mismatches. Only the first {len(frames_guide)} frames of style video will be used.\n"
frames_style.set_length(len(frames_guide))
elif len(frames_guide) > len(frames_style):
message += f"The number of frames mismatches. Only the first {len(frames_style)} frames of guide video will be used.\n"
frames_guide.set_length(len(frames_style))
height_guide, width_guide = frames_guide.shape()
height_style, width_style = frames_style.shape()
if height_guide != height_style or width_guide != width_style:
message += f"The shape of frames mismatches. The frames in style video will be resized to (height: {height_guide}, width: {width_guide})\n"
frames_style.set_shape(height_guide, width_guide)
return frames_guide, frames_style, message
def smooth_video(
video_guide,
video_guide_folder,
video_style,
video_style_folder,
mode,
window_size,
batch_size,
tracking_window_size,
output_path,
fps,
minimum_patch_size,
num_iter,
guide_weight,
initialize,
progress = None,
):
# input
frames_guide, frames_style, message = check_input_for_blending(video_guide, video_guide_folder, video_style, video_style_folder)
if len(message) > 0:
print(message)
# output
if output_path == "":
if video_style is None:
output_path = os.path.join(video_style_folder, "output")
else:
output_path = os.path.join(os.path.split(video_style)[0], "output")
os.makedirs(output_path, exist_ok=True)
print("No valid output_path. Your video will be saved here:", output_path)
elif not os.path.exists(output_path):
os.makedirs(output_path, exist_ok=True)
print("Your video will be saved here:", output_path)
frames_path = os.path.join(output_path, "frames")
video_path = os.path.join(output_path, "video.mp4")
os.makedirs(frames_path, exist_ok=True)
# process
if mode == "Fast" or mode == "Balanced":
tracking_window_size = 0
ebsynth_config = {
"minimum_patch_size": minimum_patch_size,
"threads_per_block": 8,
"num_iter": num_iter,
"gpu_id": 0,
"guide_weight": guide_weight,
"initialize": initialize,
"tracking_window_size": tracking_window_size,
}
if mode == "Fast":
FastModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path)
elif mode == "Balanced":
BalancedModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path)
elif mode == "Accurate":
AccurateModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path)
# output
try:
fps = int(fps)
except:
fps = get_video_fps(video_style) if video_style is not None else 30
print("Fps:", fps)
print("Saving video...")
video_path = save_video(frames_path, video_path, num_frames=len(frames_style), fps=fps)
print("Success!")
print("Your frames are here:", frames_path)
print("Your video is here:", video_path)
return output_path, fps, video_path
class KeyFrameMatcher:
def __init__(self):
pass
def extract_number_from_filename(self, file_name):
result = []
number = -1
for i in file_name:
if ord(i)>=ord("0") and ord(i)<=ord("9"):
if number == -1:
number = 0
number = number*10 + ord(i) - ord("0")
else:
if number != -1:
result.append(number)
number = -1
if number != -1:
result.append(number)
result = tuple(result)
return result
def extract_number_from_filenames(self, file_names):
numbers = [self.extract_number_from_filename(file_name) for file_name in file_names]
min_length = min(len(i) for i in numbers)
for i in range(min_length-1, -1, -1):
if len(set(number[i] for number in numbers))==len(file_names):
return [number[i] for number in numbers]
return list(range(len(file_names)))
def match_using_filename(self, file_names_a, file_names_b):
file_names_b_set = set(file_names_b)
matched_file_name = []
for file_name in file_names_a:
if file_name not in file_names_b_set:
matched_file_name.append(None)
else:
matched_file_name.append(file_name)
return matched_file_name
def match_using_numbers(self, file_names_a, file_names_b):
numbers_a = self.extract_number_from_filenames(file_names_a)
numbers_b = self.extract_number_from_filenames(file_names_b)
numbers_b_dict = {number: file_name for number, file_name in zip(numbers_b, file_names_b)}
matched_file_name = []
for number in numbers_a:
if number in numbers_b_dict:
matched_file_name.append(numbers_b_dict[number])
else:
matched_file_name.append(None)
return matched_file_name
def match_filenames(self, file_names_a, file_names_b):
matched_file_name = self.match_using_filename(file_names_a, file_names_b)
if sum([i is not None for i in matched_file_name]) > 0:
return matched_file_name
matched_file_name = self.match_using_numbers(file_names_a, file_names_b)
return matched_file_name
def detect_frames(frames_path, keyframes_path):
if not os.path.exists(frames_path) and not os.path.exists(keyframes_path):
return "Please input the directory of guide video and rendered frames"
elif not os.path.exists(frames_path):
return "Please input the directory of guide video"
elif not os.path.exists(keyframes_path):
return "Please input the directory of rendered frames"
frames = [os.path.split(i)[-1] for i in search_for_images(frames_path)]
keyframes = [os.path.split(i)[-1] for i in search_for_images(keyframes_path)]
if len(frames)==0:
return f"No images detected in {frames_path}"
if len(keyframes)==0:
return f"No images detected in {keyframes_path}"
matched_keyframes = KeyFrameMatcher().match_filenames(frames, keyframes)
max_filename_length = max([len(i) for i in frames])
if sum([i is not None for i in matched_keyframes])==0:
message = ""
for frame, matched_keyframe in zip(frames, matched_keyframes):
message += frame + " " * (max_filename_length - len(frame) + 1)
message += "--> No matched keyframes\n"
else:
message = ""
for frame, matched_keyframe in zip(frames, matched_keyframes):
message += frame + " " * (max_filename_length - len(frame) + 1)
if matched_keyframe is None:
message += "--> [to be rendered]\n"
else:
message += f"--> {matched_keyframe}\n"
return message
def check_input_for_interpolating(frames_path, keyframes_path):
# search for images
frames = [os.path.split(i)[-1] for i in search_for_images(frames_path)]
keyframes = [os.path.split(i)[-1] for i in search_for_images(keyframes_path)]
# match frames
matched_keyframes = KeyFrameMatcher().match_filenames(frames, keyframes)
file_list = [file_name for file_name in matched_keyframes if file_name is not None]
index_style = [i for i, file_name in enumerate(matched_keyframes) if file_name is not None]
frames_guide = VideoData(None, frames_path)
frames_style = VideoData(None, keyframes_path, file_list=file_list)
# match shape
message = ""
height_guide, width_guide = frames_guide.shape()
height_style, width_style = frames_style.shape()
if height_guide != height_style or width_guide != width_style:
message += f"The shape of frames mismatches. The rendered keyframes will be resized to (height: {height_guide}, width: {width_guide})\n"
frames_style.set_shape(height_guide, width_guide)
return frames_guide, frames_style, index_style, message
def interpolate_video(
frames_path,
keyframes_path,
output_path,
fps,
batch_size,
tracking_window_size,
minimum_patch_size,
num_iter,
guide_weight,
initialize,
progress = None,
):
# input
frames_guide, frames_style, index_style, message = check_input_for_interpolating(frames_path, keyframes_path)
if len(message) > 0:
print(message)
# output
if output_path == "":
output_path = os.path.join(keyframes_path, "output")
os.makedirs(output_path, exist_ok=True)
print("No valid output_path. Your video will be saved here:", output_path)
elif not os.path.exists(output_path):
os.makedirs(output_path, exist_ok=True)
print("Your video will be saved here:", output_path)
output_frames_path = os.path.join(output_path, "frames")
output_video_path = os.path.join(output_path, "video.mp4")
os.makedirs(output_frames_path, exist_ok=True)
# process
ebsynth_config = {
"minimum_patch_size": minimum_patch_size,
"threads_per_block": 8,
"num_iter": num_iter,
"gpu_id": 0,
"guide_weight": guide_weight,
"initialize": initialize,
"tracking_window_size": tracking_window_size
}
if len(index_style)==1:
InterpolationModeSingleFrameRunner().run(frames_guide, frames_style, index_style, batch_size=batch_size, ebsynth_config=ebsynth_config, save_path=output_frames_path)
else:
InterpolationModeRunner().run(frames_guide, frames_style, index_style, batch_size=batch_size, ebsynth_config=ebsynth_config, save_path=output_frames_path)
try:
fps = int(fps)
except:
fps = 30
print("Fps:", fps)
print("Saving video...")
video_path = save_video(output_frames_path, output_video_path, num_frames=len(frames_guide), fps=fps)
print("Success!")
print("Your frames are here:", output_frames_path)
print("Your video is here:", video_path)
return output_path, fps, video_path
def on_ui_tabs():
with gr.Blocks(analytics_enabled=False) as ui_component:
with gr.Tab("Blend"):
gr.Markdown("""
# Blend
Given a guide video and a style video, this algorithm will make the style video fluent according to the motion features of the guide video. Click [here](https://github.com/Artiprocher/sd-webui-fastblend/assets/35051019/208d902d-6aba-48d7-b7d5-cd120ebd306d) to see the example. Note that this extension doesn't support long videos. Please use short videos (e.g., several seconds). The algorithm is mainly designed for 512*512 resolution. Please use a larger `Minimum patch size` for higher resolution.
""")
with gr.Row():
with gr.Column():
with gr.Tab("Guide video"):
video_guide = gr.Video(label="Guide video")
with gr.Tab("Guide video (images format)"):
video_guide_folder = gr.Textbox(label="Guide video (images format)", value="")
with gr.Column():
with gr.Tab("Style video"):
video_style = gr.Video(label="Style video")
with gr.Tab("Style video (images format)"):
video_style_folder = gr.Textbox(label="Style video (images format)", value="")
with gr.Column():
output_path = gr.Textbox(label="Output directory", value="", placeholder="Leave empty to use the directory of style video")
fps = gr.Textbox(label="Fps", value="", placeholder="Leave empty to use the default fps")
video_output = gr.Video(label="Output video", interactive=False, show_share_button=True)
btn = gr.Button(value="Blend")
with gr.Row():
with gr.Column():
gr.Markdown("# Settings")
mode = gr.Radio(["Fast", "Balanced", "Accurate"], label="Inference mode", value="Fast", interactive=True)
window_size = gr.Slider(label="Sliding window size", value=15, minimum=1, maximum=1000, step=1, interactive=True)
batch_size = gr.Slider(label="Batch size", value=8, minimum=1, maximum=128, step=1, interactive=True)
tracking_window_size = gr.Slider(label="Tracking window size (only for accurate mode)", value=0, minimum=0, maximum=10, step=1, interactive=True)
gr.Markdown("## Advanced Settings")
minimum_patch_size = gr.Slider(label="Minimum patch size (odd number)", value=5, minimum=5, maximum=99, step=2, interactive=True)
num_iter = gr.Slider(label="Number of iterations", value=5, minimum=1, maximum=10, step=1, interactive=True)
guide_weight = gr.Slider(label="Guide weight", value=10.0, minimum=0.0, maximum=100.0, step=0.1, interactive=True)
initialize = gr.Radio(["identity", "random"], label="NNF initialization", value="identity", interactive=True)
with gr.Column():
gr.Markdown("""
# Reference
* Output directory: the directory to save the video.
* Inference mode
|Mode|Time|Memory|Quality|Frame by frame output|Description|
|-|-|-|-|-|-|
|Fast|■|■■■|■■|No|Blend the frames using a tree-like data structure, which requires much RAM but is fast.|
|Balanced|■■|■|■■|Yes|Blend the frames naively.|
|Accurate|■■■|■|■■■|Yes|Blend the frames and align them together for higher video quality. When [batch size] >= [sliding window size] * 2 + 1, the performance is the best.|
* Sliding window size: our algorithm will blend the frames in a sliding windows. If the size is n, each frame will be blended with the last n frames and the next n frames. A large sliding window can make the video fluent but sometimes smoggy.
* Batch size: a larger batch size makes the program faster but requires more VRAM.
* Tracking window size (only for accurate mode): The size of window in which our algorithm tracks moving objects. Empirically, 1 is enough.
* Advanced settings
* Minimum patch size (odd number): the minimum patch size used for patch matching. (Default: 5)
* Number of iterations: the number of iterations of patch matching. (Default: 5)
* Guide weight: a parameter that determines how much motion feature applied to the style video. (Default: 10)
* NNF initialization: how to initialize the NNF (Nearest Neighbor Field). (Default: identity)
""")
btn.click(
smooth_video,
inputs=[
video_guide,
video_guide_folder,
video_style,
video_style_folder,
mode,
window_size,
batch_size,
tracking_window_size,
output_path,
fps,
minimum_patch_size,
num_iter,
guide_weight,
initialize
],
outputs=[output_path, fps, video_output]
)
with gr.Tab("Interpolate"):
gr.Markdown("""
# Interpolate
Given a guide video and some rendered keyframes, this algorithm will render the remaining frames. Click [here](https://github.com/Artiprocher/sd-webui-fastblend/assets/35051019/3490c5b4-8f67-478f-86de-f9adc2ace16a) to see the example. The algorithm is experimental and is only tested for 512*512 resolution.
""")
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
video_guide_folder_ = gr.Textbox(label="Guide video (images format)", value="")
with gr.Column():
rendered_keyframes_ = gr.Textbox(label="Rendered keyframes (images format)", value="")
with gr.Row():
detected_frames = gr.Textbox(label="Detected frames", value="Please input the directory of guide video and rendered frames", lines=9, max_lines=9, interactive=False)
video_guide_folder_.change(detect_frames, inputs=[video_guide_folder_, rendered_keyframes_], outputs=detected_frames)
rendered_keyframes_.change(detect_frames, inputs=[video_guide_folder_, rendered_keyframes_], outputs=detected_frames)
with gr.Column():
output_path_ = gr.Textbox(label="Output directory", value="", placeholder="Leave empty to use the directory of rendered keyframes")
fps_ = gr.Textbox(label="Fps", value="", placeholder="Leave empty to use the default fps")
video_output_ = gr.Video(label="Output video", interactive=False, show_share_button=True)
btn_ = gr.Button(value="Interpolate")
with gr.Row():
with gr.Column():
gr.Markdown("# Settings")
batch_size_ = gr.Slider(label="Batch size", value=8, minimum=1, maximum=128, step=1, interactive=True)
tracking_window_size_ = gr.Slider(label="Tracking window size", value=0, minimum=0, maximum=10, step=1, interactive=True)
gr.Markdown("## Advanced Settings")
minimum_patch_size_ = gr.Slider(label="Minimum patch size (odd number, larger is better)", value=15, minimum=5, maximum=99, step=2, interactive=True)
num_iter_ = gr.Slider(label="Number of iterations", value=5, minimum=1, maximum=10, step=1, interactive=True)
guide_weight_ = gr.Slider(label="Guide weight", value=10.0, minimum=0.0, maximum=100.0, step=0.1, interactive=True)
initialize_ = gr.Radio(["identity", "random"], label="NNF initialization", value="identity", interactive=True)
with gr.Column():
gr.Markdown("""
# Reference
* Output directory: the directory to save the video.
* Batch size: a larger batch size makes the program faster but requires more VRAM.
* Tracking window size (only for accurate mode): The size of window in which our algorithm tracks moving objects. Empirically, 1 is enough.
* Advanced settings
* Minimum patch size (odd number): the minimum patch size used for patch matching. **This parameter should be larger than that in blending. (Default: 15)**
* Number of iterations: the number of iterations of patch matching. (Default: 5)
* Guide weight: a parameter that determines how much motion feature applied to the style video. (Default: 10)
* NNF initialization: how to initialize the NNF (Nearest Neighbor Field). (Default: identity)
""")
btn_.click(
interpolate_video,
inputs=[
video_guide_folder_,
rendered_keyframes_,
output_path_,
fps_,
batch_size_,
tracking_window_size_,
minimum_patch_size_,
num_iter_,
guide_weight_,
initialize_,
],
outputs=[output_path_, fps_, video_output_]
)
return [(ui_component, "FastBlend", "FastBlend_ui")]
|