File size: 7,722 Bytes
1a010d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea20f06
1a010d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea20f06
 
 
 
 
 
 
1a010d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4401b6f
 
 
1a010d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4401b6f
1a010d5
 
 
 
ea20f06
1a010d5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import subprocess
subprocess.run(
    'pip install numpy==1.26.4',
    shell=True
)

import os
import gradio as gr
import torch
import spaces
import random
from PIL import Image
import numpy as np

from glob import glob
from pathlib import Path
from typing import Optional

#Core functions from https://github.com/modelscope/DiffSynth-Studio
from diffsynth import save_video, ModelManager, SVDVideoPipeline
from diffsynth import SDVideoPipeline, ControlNetConfigUnit, VideoData, save_frames
from diffsynth.extensions.RIFE import RIFESmoother

import cv2

# Constants
MAX_SEED = np.iinfo(np.int32).max
CSS = """
footer {
    visibility: hidden;
}
"""

JS = """function () {
  gradioURL = window.location.href
  if (!gradioURL.endsWith('?__theme=dark')) {
    window.location.replace(gradioURL + '?__theme=dark');
  }
}"""


# Ensure model and scheduler are initialized in GPU-enabled function
if torch.cuda.is_available():

    model_manager2 = ModelManager(torch_dtype=torch.float16, device="cuda")
    model_manager2.load_textual_inversions("models/textual_inversion")
    model_manager2.load_models([
            "models/stable_diffusion/flat2DAnimerge_v45Sharp.safetensors",
            "models/AnimateDiff/mm_sd_v15_v2.ckpt",
            "models/ControlNet/control_v11p_sd15_lineart.pth",
            "models/ControlNet/control_v11f1e_sd15_tile.pth",
            "models/RIFE/flownet.pkl"
    ])
    pipe2 = SDVideoPipeline.from_model_manager(
        model_manager2,
        [
            ControlNetConfigUnit(
                processor_id="lineart",
                model_path="models/ControlNet/control_v11p_sd15_lineart.pth",
                scale=0.5
            ),
            ControlNetConfigUnit(
                processor_id="tile",
                model_path="models/ControlNet/control_v11f1e_sd15_tile.pth",
                scale=0.5
            )
        ]
    )
    smoother = RIFESmoother.from_model_manager(model_manager2)



def update_frames(video_in):
    up_video = VideoData(
            video_file=video_in)
    frame_len = len(up_video)
    video_path = video_in
    cap = cv2.VideoCapture(video_path)
    fps_in = cap.get(cv2.CAP_PROP_FPS)
    width_in = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height_in = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    cap.release()
    return gr.update(maximum=frame_len), gr.update(value=fps_in), gr.update(value=width_in), gr.update(value=height_in)

@spaces.GPU(duration=180)
def generate(
    video_in, 
    image_in,
    prompt: str = "best quality",
    seed: int = -1,
    num_inference_steps: int = 10,
    num_frames: int = 30,
    height: int = 512,
    width: int = 512,
    animatediff_batch_size: int = 32,
    animatediff_stride: int = 16,
    fps_id: int = 25,
    output_folder: str = "outputs",
    progress=gr.Progress(track_tqdm=True)):
    
    video = ""
    if seed == -1:
        seed = random.randint(0, MAX_SEED)

    torch.manual_seed(seed)
    
    os.makedirs(output_folder, exist_ok=True)
    base_count = len(glob(os.path.join(output_folder, "*.mp4")))
    video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
    
    up_video = VideoData(
        video_file=video_in,
        height=height, width=width)
    input_video = [up_video[i] for i in range(1, num_frames)]

    video = pipe2(
        prompt=prompt,
        negative_prompt="verybadimagenegative_v1.3",
        cfg_scale=3, 
        clip_skip=2,
        controlnet_frames=input_video,
        num_frames=len(input_video),
        num_inference_steps=num_inference_steps, 
        height=height, 
        width=width,
        animatediff_batch_size=animatediff_batch_size, 
        animatediff_stride=animatediff_stride,
        unet_batch_size=8,
        controlnet_batch_size=8,
        vram_limit_level=0,
    )
    video = smoother(video)

    
    save_video(video, video_path, fps=fps_id)
    
    return video_path, seed


examples = [
        ['./walking.mp4', None, "A woman walking on the street"],
        ['./smilegirl.mp4', None, "A girl stand on the grass"],
        ['./working.mp4', None, "A woman is doing the dishes"],
    ]


# Gradio Interface

with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
    gr.HTML("<h1><center>Exvideo📽️Diffutoon</center></h1>")
    gr.HTML("""
        <p><center>Exvideo and Diffutoon video generation
        <br><b>Update</b>: Output resize, Frames length control.
        <br><b>Note</b>: ZeroGPU limited, Set the parameters appropriately.</center></p>
        """)
    with gr.Row():
        video_in = gr.Video(label='Upload Video', height=600, scale=2)
        image_in = gr.Image(label='Upload Image', height=600, scale=2, image_mode="RGB", type="filepath", visible=False)
        video = gr.Video(label="Generated Video", height=600, scale=2)
        with gr.Column(scale=1):
            seed = gr.Slider(
                label="Seed (-1 Random)",
                minimum=-1,
                maximum=MAX_SEED,
                step=1,
                value=-1,
                )
            num_inference_steps = gr.Slider(
                label="Inference steps", 
                info="Inference steps",
                step=1,
                value=10, 
                minimum=1, 
                maximum=50,
                )
            num_frames = gr.Slider(
                label="Num frames", 
                info="Output Frames",
                step=1,
                value=30,
                minimum=1, 
                maximum=128,
            )
            with gr.Row():
                height = gr.Slider(
                    label="Height", 
                    step=8,
                    value=512, 
                    minimum=256, 
                    maximum=2560,
                    )
                width = gr.Slider(
                    label="Width", 
                    step=8,
                    value=512, 
                    minimum=256, 
                    maximum=2560,
                    )
            with gr.Accordion("Diffutoon Options", open=False):
                animatediff_batch_size = gr.Slider(
                    label="Animatediff batch size",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=32,
                )
                animatediff_stride = gr.Slider(
                    label="Animatediff stride",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=16,
                )
                fps_id = gr.Slider(
                    label="Frames per second", 
                    info="The length of your video in seconds will be 25/fps", 
                    value=6,
                    step=1,
                    minimum=5, 
                    maximum=30,
                )
    prompt = gr.Textbox(label="Prompt", value="best quality")
    with gr.Row():
        submit_btn = gr.Button(value="Generate")
        #stop_btn = gr.Button(value="Stop", variant="stop")
        clear_btn = gr.ClearButton([video_in, image_in, seed, video])
        
    gr.Examples(
        examples=examples,
        fn=generate,
        inputs=[video_in, image_in, prompt],
        outputs=[video, seed],
        cache_examples="lazy",
        examples_per_page=4,
    )
    video_in.upload(update_frames, inputs=[video_in], outputs=[num_frames, fps_id, width, height])
    submit_event = submit_btn.click(fn=generate, inputs=[video_in, image_in, prompt, seed, num_inference_steps, num_frames, height, width, animatediff_batch_size, animatediff_stride, fps_id], outputs=[video, seed], api_name="video")
    #stop_btn.click(fn=None, inputs=None, outputs=None, cancels=[submit_event])
    
demo.queue().launch()