File size: 3,957 Bytes
fb4fac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
from einops import rearrange


def low_version_attention(query, key, value, attn_bias=None):
    scale = 1 / query.shape[-1] ** 0.5
    query = query * scale
    attn = torch.matmul(query, key.transpose(-2, -1))
    if attn_bias is not None:
        attn = attn + attn_bias
    attn = attn.softmax(-1)
    return attn @ value


class Attention(torch.nn.Module):

    def __init__(self, q_dim, num_heads, head_dim, kv_dim=None, bias_q=False, bias_kv=False, bias_out=False):
        super().__init__()
        dim_inner = head_dim * num_heads
        kv_dim = kv_dim if kv_dim is not None else q_dim
        self.num_heads = num_heads
        self.head_dim = head_dim

        self.to_q = torch.nn.Linear(q_dim, dim_inner, bias=bias_q)
        self.to_k = torch.nn.Linear(kv_dim, dim_inner, bias=bias_kv)
        self.to_v = torch.nn.Linear(kv_dim, dim_inner, bias=bias_kv)
        self.to_out = torch.nn.Linear(dim_inner, q_dim, bias=bias_out)

    def interact_with_ipadapter(self, hidden_states, q, ip_k, ip_v, scale=1.0):
        batch_size = q.shape[0]
        ip_k = ip_k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
        ip_v = ip_v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
        ip_hidden_states = torch.nn.functional.scaled_dot_product_attention(q, ip_k, ip_v)
        hidden_states = hidden_states + scale * ip_hidden_states
        return hidden_states

    def torch_forward(self, hidden_states, encoder_hidden_states=None, attn_mask=None, ipadapter_kwargs=None, qkv_preprocessor=None):
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states

        batch_size = encoder_hidden_states.shape[0]

        q = self.to_q(hidden_states)
        k = self.to_k(encoder_hidden_states)
        v = self.to_v(encoder_hidden_states)

        q = q.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
        k = k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
        v = v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)

        if qkv_preprocessor is not None:
            q, k, v = qkv_preprocessor(q, k, v)

        hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
        if ipadapter_kwargs is not None:
            hidden_states = self.interact_with_ipadapter(hidden_states, q, **ipadapter_kwargs)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
        hidden_states = hidden_states.to(q.dtype)

        hidden_states = self.to_out(hidden_states)

        return hidden_states
    
    def xformers_forward(self, hidden_states, encoder_hidden_states=None, attn_mask=None):
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states

        q = self.to_q(hidden_states)
        k = self.to_k(encoder_hidden_states)
        v = self.to_v(encoder_hidden_states)

        q = rearrange(q, "b f (n d) -> (b n) f d", n=self.num_heads)
        k = rearrange(k, "b f (n d) -> (b n) f d", n=self.num_heads)
        v = rearrange(v, "b f (n d) -> (b n) f d", n=self.num_heads)

        if attn_mask is not None:
            hidden_states = low_version_attention(q, k, v, attn_bias=attn_mask)
        else:
            import xformers.ops as xops
            hidden_states = xops.memory_efficient_attention(q, k, v)
        hidden_states = rearrange(hidden_states, "(b n) f d -> b f (n d)", n=self.num_heads)

        hidden_states = hidden_states.to(q.dtype)
        hidden_states = self.to_out(hidden_states)

        return hidden_states

    def forward(self, hidden_states, encoder_hidden_states=None, attn_mask=None, ipadapter_kwargs=None, qkv_preprocessor=None):
        return self.torch_forward(hidden_states, encoder_hidden_states=encoder_hidden_states, attn_mask=attn_mask, ipadapter_kwargs=ipadapter_kwargs, qkv_preprocessor=qkv_preprocessor)