ControlNet-with-GPT-4 / app_depth.py
hysts's picture
hysts HF staff
Update
3c4344e
raw
history blame
4.38 kB
#!/usr/bin/env python
import gradio as gr
from settings import (DEFAULT_IMAGE_RESOLUTION, DEFAULT_NUM_IMAGES,
MAX_IMAGE_RESOLUTION, MAX_NUM_IMAGES, MAX_SEED)
from utils import randomize_seed_fn
def create_demo(process):
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
image = gr.Image()
prompt = gr.Textbox(label='Prompt')
run_button = gr.Button('Run')
with gr.Accordion('Advanced options', open=False):
preprocessor_name = gr.Radio(
label='Preprocessor',
choices=['Midas', 'DPT', 'None'],
type='value',
value='DPT')
num_samples = gr.Slider(label='Number of images',
minimum=1,
maximum=MAX_NUM_IMAGES,
value=DEFAULT_NUM_IMAGES,
step=1)
image_resolution = gr.Slider(
label='Image resolution',
minimum=256,
maximum=MAX_IMAGE_RESOLUTION,
value=DEFAULT_IMAGE_RESOLUTION,
step=256)
preprocess_resolution = gr.Slider(
label='Preprocess resolution',
minimum=128,
maximum=512,
value=384,
step=1)
num_steps = gr.Slider(label='Number of steps',
minimum=1,
maximum=100,
value=20,
step=1)
guidance_scale = gr.Slider(label='Guidance scale',
minimum=0.1,
maximum=30.0,
value=9.0,
step=0.1)
seed = gr.Slider(label='Seed',
minimum=0,
maximum=MAX_SEED,
step=1,
value=0)
randomize_seed = gr.Checkbox(label='Randomize seed',
value=True)
a_prompt = gr.Textbox(
label='Additional prompt',
value='best quality, extremely detailed')
n_prompt = gr.Textbox(
label='Negative prompt',
value=
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
)
with gr.Column():
result = gr.Gallery(label='Output',
show_label=False,
columns=2,
object_fit='scale-down')
inputs = [
image,
prompt,
a_prompt,
n_prompt,
num_samples,
image_resolution,
preprocess_resolution,
num_steps,
guidance_scale,
seed,
preprocessor_name,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=process,
inputs=inputs,
outputs=result,
api_name=False,
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=process,
inputs=inputs,
outputs=result,
api_name='depth',
)
return demo
if __name__ == '__main__':
from model import Model
model = Model(task_name='depth')
demo = create_demo(model.process_depth)
demo.queue().launch()