File size: 23,660 Bytes
6af2279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52f3cb0
 
 
 
 
 
 
 
 
6af2279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52f3cb0
 
 
 
 
 
 
 
6af2279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52f3cb0
 
 
 
 
 
 
 
 
 
6af2279
 
52f3cb0
 
6af2279
 
 
 
 
 
52f3cb0
 
6af2279
52f3cb0
6af2279
 
 
 
52f3cb0
6af2279
 
 
 
 
 
 
52f3cb0
6af2279
 
52f3cb0
6af2279
52f3cb0
6af2279
 
52f3cb0
6af2279
 
52f3cb0
1ab01f2
6af2279
 
52f3cb0
 
 
1ab01f2
52f3cb0
 
 
6af2279
52f3cb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6af2279
52f3cb0
6af2279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52f3cb0
 
 
 
 
 
 
6af2279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
import os
import sys

os.system("git clone https://github.com/C0untFloyd/bark-gui.git")
sys.path.append("./bark-gui/")

from cProfile import label
from distutils.command.check import check
from doctest import Example
import gradio as gr
import numpy as np
import logging
import torch
import pytorch_seed
import time

import torchaudio
from speechbrain.pretrained import SpectralMaskEnhancement

enhance_model = SpectralMaskEnhancement.from_hparams(
    source="speechbrain/metricgan-plus-voicebank",
    savedir="pretrained_models/metricgan-plus-voicebank",
    run_opts={"device":"cuda"},
)

from xml.sax import saxutils
from bark.api import generate_with_settings
from bark.api import save_as_prompt
from settings import Settings
#import nltk

from bark import SAMPLE_RATE
from bark.clonevoice import clone_voice
from bark.generation import SAMPLE_RATE, preload_models
from scipy.io.wavfile import write as write_wav
from parseinput import split_and_recombine_text, build_ssml, is_ssml, create_clips_from_ssml
from datetime import datetime
from tqdm.auto import tqdm
from id3tagging import add_id3_tag

import shutil

import string
import argparse
import json

from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
try:
  from TTS.utils.audio import AudioProcessor
except:
  from TTS.utils.audio import AudioProcessor


from TTS.tts.models import setup_model
from TTS.config import load_config
from TTS.tts.models.vits import *

from TTS.tts.utils.speakers import SpeakerManager
from pydub import AudioSegment

# from google.colab import files
import librosa

from scipy.io.wavfile import write, read

import subprocess


OUTPUTFOLDER = "Outputs"

def speechbrain(aud):
  # Load and add fake batch dimension
  noisy = enhance_model.load_audio(
      aud
  ).unsqueeze(0)
  enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.]))
  torchaudio.save('enhanced.wav', enhanced.cpu(), 16000)
  return 'enhanced.wav'

def generate_text_to_speech(text, selected_speaker, text_temp, waveform_temp, eos_prob, quick_generation, complete_settings, seed, progress=gr.Progress(track_tqdm=True)):
    if text == None or len(text) < 1:
        raise gr.Error('No text entered!')

    # Chunk the text into smaller pieces then combine the generated audio

    # generation settings
    if selected_speaker == 'None':
        selected_speaker = None
    if seed != None and seed > 2**32 - 1:
        logger.warning(f"Seed {seed} > 2**32 - 1 (max), setting to random")
        seed = None
    if seed == None or seed <= 0:
        seed = np.random.default_rng().integers(1, 2**32 - 1)
    assert(0 < seed and seed < 2**32)

    voice_name = selected_speaker
    use_last_generation_as_history = "Use last generation as history" in complete_settings
    save_last_generation = "Save generation as Voice" in complete_settings
    progress(0, desc="Generating")

    silenceshort = np.zeros(int((float(settings.silence_sentence) / 1000.0) * SAMPLE_RATE), dtype=np.float32)  # quarter second of silence
    silencelong = np.zeros(int((float(settings.silence_speakers) / 1000.0) * SAMPLE_RATE), dtype=np.float32)  # half a second of silence
    full_generation = None

    all_parts = []
    complete_text = ""
    text = text.lstrip()
    if is_ssml(text):
        list_speak = create_clips_from_ssml(text)
        prev_speaker = None
        for i, clip in tqdm(enumerate(list_speak), total=len(list_speak)):
            selected_speaker = clip[0]
            # Add pause break between speakers
            if i > 0 and selected_speaker != prev_speaker:
                all_parts += [silencelong.copy()]
            prev_speaker = selected_speaker
            text = clip[1]
            text = saxutils.unescape(text)
            if selected_speaker == "None":
                selected_speaker = None

            print(f"\nGenerating Text ({i+1}/{len(list_speak)}) -> {selected_speaker} (Seed {seed}):`{text}`")
            complete_text += text
            with pytorch_seed.SavedRNG(seed):
                audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)
                seed = torch.random.initial_seed()
            if len(list_speak) > 1:
                filename = create_filename(OUTPUTFOLDER, seed, "audioclip",".wav")
                save_wav(audio_array, filename)
                add_id3_tag(filename, text, selected_speaker, seed)

            all_parts += [audio_array]
    else:
        texts = split_and_recombine_text(text, settings.input_text_desired_length, settings.input_text_max_length)
        for i, text in tqdm(enumerate(texts), total=len(texts)):
            print(f"\nGenerating Text ({i+1}/{len(texts)}) -> {selected_speaker} (Seed {seed}):`{text}`")
            complete_text += text
            if quick_generation == True:
                with pytorch_seed.SavedRNG(seed):
                    audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)
                    seed = torch.random.initial_seed()
            else:
                full_output = use_last_generation_as_history or save_last_generation
                if full_output:
                    full_generation, audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob, output_full=True)
                else:
                    audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)

            # Noticed this in the HF Demo - convert to 16bit int -32767/32767 - most used audio format  
            # audio_array = (audio_array * 32767).astype(np.int16)

            if len(texts) > 1:
                filename = create_filename(OUTPUTFOLDER, seed, "audioclip",".wav")
                save_wav(audio_array, filename)
                add_id3_tag(filename, text, selected_speaker, seed)

            if quick_generation == False and (save_last_generation == True or use_last_generation_as_history == True):
                # save to npz
                voice_name = create_filename(OUTPUTFOLDER, seed, "audioclip", ".npz")
                save_as_prompt(voice_name, full_generation)
                if use_last_generation_as_history:
                    selected_speaker = voice_name

            all_parts += [audio_array]
            # Add short pause between sentences
            if text[-1] in "!?.\n" and i > 1:
                all_parts += [silenceshort.copy()]

    # save & play audio
    result = create_filename(OUTPUTFOLDER, seed, "final",".wav")
    save_wav(np.concatenate(all_parts), result)
    # write id3 tag with text truncated to 60 chars, as a precaution...
    add_id3_tag(result, complete_text, selected_speaker, seed)
    return result

def create_filename(path, seed, name, extension):
    now = datetime.now()
    date_str =now.strftime("%m-%d-%Y")
    outputs_folder = os.path.join(os.getcwd(), path)
    if not os.path.exists(outputs_folder):
        os.makedirs(outputs_folder)

    sub_folder = os.path.join(outputs_folder, date_str)
    if not os.path.exists(sub_folder):
        os.makedirs(sub_folder)

    time_str = now.strftime("%H-%M-%S")
    file_name = f"{name}_{time_str}_s{seed}{extension}"
    return os.path.join(sub_folder, file_name)


def save_wav(audio_array, filename):
    write_wav(filename, SAMPLE_RATE, audio_array)

def save_voice(filename, semantic_prompt, coarse_prompt, fine_prompt):
    np.savez_compressed(
        filename,
        semantic_prompt=semantic_prompt,
        coarse_prompt=coarse_prompt,
        fine_prompt=fine_prompt
    )
    

def on_quick_gen_changed(checkbox):
    if checkbox == False:
        return gr.CheckboxGroup.update(visible=True)
    return gr.CheckboxGroup.update(visible=False)

def delete_output_files(checkbox_state):
    if checkbox_state:
        outputs_folder = os.path.join(os.getcwd(), OUTPUTFOLDER)
        if os.path.exists(outputs_folder):
            purgedir(outputs_folder)
    return False


# https://stackoverflow.com/a/54494779
def purgedir(parent):
    for root, dirs, files in os.walk(parent):                                      
        for item in files:
            # Delete subordinate files                                                 
            filespec = os.path.join(root, item)
            os.unlink(filespec)
        for item in dirs:
            # Recursively perform this operation for subordinate directories   
            purgedir(os.path.join(root, item))

def convert_text_to_ssml(text, selected_speaker):
    return build_ssml(text, selected_speaker)


def apply_settings(themes, input_server_name, input_server_port, input_server_public, input_desired_len, input_max_len, input_silence_break, input_silence_speaker):
    settings.selected_theme = themes
    settings.server_name = input_server_name
    settings.server_port = input_server_port
    settings.server_share = input_server_public
    settings.input_text_desired_length = input_desired_len
    settings.input_text_max_length = input_max_len
    settings.silence_sentence = input_silence_break
    settings.silence_speaker = input_silence_speaker
    settings.save()

def restart():
    global restart_server
    restart_server = True


def create_version_html():
    python_version = ".".join([str(x) for x in sys.version_info[0:3]])
    versions_html = f"""
python: <span title="{sys.version}">{python_version}</span>
 • 
torch: {getattr(torch, '__long_version__',torch.__version__)}
 • 
gradio: {gr.__version__}
"""
    return versions_html

    

logger = logging.getLogger(__name__)
APPTITLE = "Bark UI Enhanced v0.4.6"


autolaunch = False

if len(sys.argv) > 1:
    autolaunch = "-autolaunch" in sys.argv


if torch.cuda.is_available() == False:
    os.environ['BARK_FORCE_CPU'] = 'True'
    logger.warning("No CUDA detected, fallback to CPU!")

print(f'smallmodels={os.environ.get("SUNO_USE_SMALL_MODELS", False)}')
print(f'enablemps={os.environ.get("SUNO_ENABLE_MPS", False)}')
print(f'offloadcpu={os.environ.get("SUNO_OFFLOAD_CPU", False)}')
print(f'forcecpu={os.environ.get("BARK_FORCE_CPU", False)}')
print(f'autolaunch={autolaunch}\n\n')

#print("Updating nltk\n")
#nltk.download('punkt')

print("Preloading Models\n")
preload_models()

settings = Settings('config.yaml')

# Collect all existing speakers/voices in dir
speakers_list = []

for root, dirs, files in os.walk("./bark/assets/prompts"):
	for file in files:
		if(file.endswith(".npz")):
			pathpart = root.replace("./bark/assets/prompts", "")
			name = os.path.join(pathpart, file[:-4])
			if name.startswith("/") or name.startswith("\\"):
				name = name[1:]
			speakers_list.append(name)

speakers_list = sorted(speakers_list, key=lambda x: x.lower())
speakers_list.insert(0, 'None')

available_themes = ["Default", "gradio/glass", "gradio/monochrome", "gradio/seafoam", "gradio/soft", "gstaff/xkcd", "freddyaboulton/dracula_revamped", "ysharma/steampunk"]

seed = -1
server_name = settings.server_name
if len(server_name) < 1:
    server_name = None
server_port = settings.server_port
if server_port <= 0:
    server_port = None
global run_server
global restart_server

run_server = True




'''
from google.colab import drive
drive.mount('/content/drive')
src_path = os.path.join(os.path.join(os.path.join(os.path.join(os.getcwd(), 'drive'), 'MyDrive'), 'Colab Notebooks'), 'best_model_latest.pth.tar')
dst_path = os.path.join(os.getcwd(), 'best_model.pth.tar')
shutil.copy(src_path, dst_path)
'''

TTS_PATH = "TTS/"

# add libraries into environment
sys.path.append(TTS_PATH) # set this if TTS is not installed globally

# Paths definition

OUT_PATH = 'out/'

# create output path
os.makedirs(OUT_PATH, exist_ok=True)

# model vars 
MODEL_PATH = 'best_model.pth.tar'
CONFIG_PATH = 'config.json'
TTS_LANGUAGES = "language_ids.json"
TTS_SPEAKERS = "speakers.json"
USE_CUDA = torch.cuda.is_available()

# load the config
C = load_config(CONFIG_PATH)

# load the audio processor
ap = AudioProcessor(**C.audio)

speaker_embedding = None

C.model_args['d_vector_file'] = TTS_SPEAKERS
C.model_args['use_speaker_encoder_as_loss'] = False

model = setup_model(C)
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES)
# print(model.language_manager.num_languages, model.embedded_language_dim)
# print(model.emb_l)
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
# remove speaker encoder
model_weights = cp['model'].copy()
for key in list(model_weights.keys()):
  if "speaker_encoder" in key:
    del model_weights[key]

model.load_state_dict(model_weights)

model.eval()

if USE_CUDA:
    model = model.cuda()

# synthesize voice
use_griffin_lim = False

# Paths definition

CONFIG_SE_PATH = "config_se.json"
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"

# Load the Speaker encoder

SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA)

# Define helper function

def compute_spec(ref_file):
  y, sr = librosa.load(ref_file, sr=ap.sample_rate)
  spec = ap.spectrogram(y)
  spec = torch.FloatTensor(spec).unsqueeze(0)
  return spec


def voice_conversion(ta, ra, da):

  target_audio = 'target.wav'
  reference_audio = 'reference.wav'
  driving_audio = 'driving.wav'

  write(target_audio, ta[0], ta[1])
  write(reference_audio, ra[0], ra[1])
  write(driving_audio, da[0], da[1])          

  # !ffmpeg-normalize $target_audio -nt rms -t=-27 -o $target_audio -ar 16000 -f
  # !ffmpeg-normalize $reference_audio -nt rms -t=-27 -o $reference_audio -ar 16000 -f
  # !ffmpeg-normalize $driving_audio -nt rms -t=-27 -o $driving_audio -ar 16000 -f

  files = [target_audio, reference_audio, driving_audio]

  for file in files:
      subprocess.run(["ffmpeg-normalize", file, "-nt", "rms", "-t=-27", "-o", file, "-ar", "16000", "-f"])

  # ta_ = read(target_audio)

  target_emb = SE_speaker_manager.compute_d_vector_from_clip([target_audio])
  target_emb = torch.FloatTensor(target_emb).unsqueeze(0)

  driving_emb = SE_speaker_manager.compute_d_vector_from_clip([reference_audio])
  driving_emb = torch.FloatTensor(driving_emb).unsqueeze(0)

  # Convert the voice

  driving_spec = compute_spec(driving_audio)
  y_lengths = torch.tensor([driving_spec.size(-1)])
  if USE_CUDA:
      ref_wav_voc, _, _ = model.voice_conversion(driving_spec.cuda(), y_lengths.cuda(), driving_emb.cuda(), target_emb.cuda())
      ref_wav_voc = ref_wav_voc.squeeze().cpu().detach().numpy()
  else:
      ref_wav_voc, _, _ = model.voice_conversion(driving_spec, y_lengths, driving_emb, target_emb)
      ref_wav_voc = ref_wav_voc.squeeze().detach().numpy()

  # print("Reference Audio after decoder:")
  # IPython.display.display(Audio(ref_wav_voc, rate=ap.sample_rate))

  return (ap.sample_rate, ref_wav_voc)


while run_server:
    print(f'Launching {APPTITLE} Server')

    # Create Gradio Blocks

    with gr.Blocks(title=f"{APPTITLE}", mode=f"{APPTITLE}", theme=settings.selected_theme) as barkgui:
        gr.Markdown("# <center>🐶🥳🎶 - Bark拟声最新版,开启声音真实复刻的新纪元!</center>")
        gr.Markdown("### <center>🦄 - [Bark](https://github.com/suno-ai/bark)拟声,能够实现语音、语调及说话情感的真实复刻</center>")
        gr.Markdown(
                f""" 
                ### <center>🤗 - Powered by [Bark Enhanced(https://github.com/C0untFloyd/bark-gui). Thanks to C0untFloyd.</center>
                ### <center>1. 您可以复制该程序并用GPU运行: <a href="https://huggingface.co/spaces/{os.getenv('SPACE_ID')}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></center>
                ### <center>2. 更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>
            """
        )
        with gr.Tab("🐶 - Bark拟声"):
            with gr.Row():
                with gr.Column():
                    placeholder = "想让Bark说些什么呢?"
                    input_text = gr.Textbox(label="用作声音合成的文本", lines=4, placeholder=placeholder)
                with gr.Column():
                    seedcomponent = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1)
                    convert_to_ssml_button = gr.Button("Convert Text to SSML")

            with gr.Row():
                with gr.Column():
                    gr.Markdown("查看Bark官方[语言库](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c)")
                    speaker = gr.Dropdown(speakers_list, value=speakers_list[0], label="中英双语的不同声音供您选择")
                with gr.Column():
                    text_temp = gr.Slider(0.1, 1.0, value=0.7, label="Generation Temperature", info="1.0 more diverse, 0.1 more conservative")
                    waveform_temp = gr.Slider(0.1, 1.0, value=0.7, label="Waveform temperature", info="1.0 more diverse, 0.1 more conservative")

            with gr.Row():
                with gr.Column():
                    quick_gen_checkbox = gr.Checkbox(label="是否要快速合成语音", value=True)
                    settings_checkboxes = ["Use last generation as history", "Save generation as Voice"]
                    complete_settings = gr.CheckboxGroup(choices=settings_checkboxes, value=settings_checkboxes, label="Detailed Generation Settings", type="value", interactive=True, visible=False)
                with gr.Column():
                    eos_prob = gr.Slider(0.0, 0.5, value=0.05, label="End of sentence probability")

            with gr.Row():
                with gr.Column():
                    tts_create_button = gr.Button("开始声音真实复刻吧")
                with gr.Column():
                    hidden_checkbox = gr.Checkbox(visible=False)
                    button_stop_generation = gr.Button("停止生成")
            with gr.Row():
                output_audio = gr.Audio(label="真实复刻的声音")

            with gr.Row():
                inp1 = gr.Audio(label="请上传您喜欢的声音")
                inp2 = output_audio
                inp3 = output_audio
                btn = gr.Button("开始生成专属声音吧")
                out1 = gr.Audio(label="为你生成的专属声音", type="filepath")
            btn.click(voice_conversion, [inp1, inp2, inp3], [out1])

            with gr.Row():
                inp4 = out1
                btn2 = gr.Button("对专属声音降噪吧")
                out2 = gr.Audio(label="降噪后的专属声音", type="filepath")
            btn2.click(speechbrain, [inp4], [out2])
            
            

            with gr.Row():
                with gr.Column():
                    examples = [
                        "Special meanings: [laughter] [laughs] [sighs] [music] [gasps] [clears throat] MAN: WOMAN:",
                       "♪ Never gonna make you cry, never gonna say goodbye, never gonna tell a lie and hurt you ♪",
                       "And now — a picture of a larch [laughter]",
                       """
                            WOMAN: I would like an oatmilk latte please.
                            MAN: Wow, that's expensive!
                       """,
                       """<?xml version="1.0"?>
    <speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
                       http://www.w3.org/TR/speech-synthesis/synthesis.xsd"
             xml:lang="en-US">
    <voice name="en_speaker_9">Look at that drunk guy!</voice>
    <voice name="en_speaker_3">Who is he?</voice>
    <voice name="en_speaker_9">WOMAN: [clears throat] 10 years ago, he proposed me and I rejected him.</voice>
    <voice name="en_speaker_3">Oh my God [laughs] he is still celebrating</voice>
    </speak>"""
                       ]
                    examples = gr.Examples(examples=examples, inputs=input_text)

        with gr.Tab("🤖 - 设置"):
            with gr.Row():
                themes = gr.Dropdown(available_themes, label="Theme", info="Change needs complete restart", value=settings.selected_theme)
            with gr.Row():
                input_server_name = gr.Textbox(label="Server Name", lines=1, info="Leave blank to run locally", value=settings.server_name)
                input_server_port = gr.Number(label="Server Port", precision=0, info="Leave at 0 to use default", value=settings.server_port)
                share_checkbox = gr.Checkbox(label="Public Server", value=settings.server_share)
            with gr.Row():
                input_desired_len = gr.Slider(100, 150, value=settings.input_text_desired_length, label="Desired Input Text Length", info="Ideal length to split input sentences")
                input_max_len = gr.Slider(150, 256, value=settings.input_text_max_length, label="Max Input Text Length", info="Maximum Input Text Length")
            with gr.Row():
                input_silence_break = gr.Slider(1, 1000, value=settings.silence_sentence, label="Sentence Pause Time (ms)", info="Silence between sentences in milliseconds")
                input_silence_speakers = gr.Slider(1, 5000, value=settings.silence_speakers, label="Speaker Pause Time (ms)", info="Silence between different speakers in milliseconds")

            with gr.Row():
                button_apply_settings = gr.Button("Apply Settings")
                button_apply_restart = gr.Button("Restart Server")
                button_delete_files = gr.Button("Clear output folder")

        gr.HTML('''
            <div class="footer">
                        <p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
                        </p>
            </div>
        ''')  

        quick_gen_checkbox.change(fn=on_quick_gen_changed, inputs=quick_gen_checkbox, outputs=complete_settings)
        convert_to_ssml_button.click(convert_text_to_ssml, inputs=[input_text, speaker],outputs=input_text)
        gen_click = tts_create_button.click(generate_text_to_speech, inputs=[input_text, speaker, text_temp, waveform_temp, eos_prob, quick_gen_checkbox, complete_settings, seedcomponent],outputs=output_audio)
        button_stop_generation.click(fn=None, inputs=None, outputs=None, cancels=[gen_click])
        # Javascript hack to display modal confirmation dialog
        js = "(x) => confirm('Are you sure? This will remove all files from output folder')"
        button_delete_files.click(None, None, hidden_checkbox, _js=js)
        hidden_checkbox.change(delete_output_files, [hidden_checkbox], [hidden_checkbox])
        button_apply_settings.click(apply_settings, inputs=[themes, input_server_name, input_server_port, share_checkbox, input_desired_len, input_max_len, input_silence_break, input_silence_speakers])
        button_apply_restart.click(restart)
        restart_server = False
        try:
            barkgui.queue().launch(show_error=True)
        except:
            restart_server = True
            run_server = False
        try:
            while restart_server == False:
                time.sleep(1.0)
        except (KeyboardInterrupt, OSError):
            print("Keyboard interruption in main thread... closing server.")
            run_server = False
        barkgui.close()