File size: 6,778 Bytes
6cd90b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""Run a demo of the CaR model on a single image."""

import numpy as np
import os
import argparse
from functools import reduce
import PIL.Image as Image
import torch
from modeling.model import CaR
from utils.utils import Config, load_yaml
import matplotlib.pyplot as plt
import colorsys
from modeling.post_process.post_process import (
    match_masks,
    generate_masks_from_sam,
)
from sam.sam import SAMPipeline
from sam.utils import build_sam_config
import random
import time


def generate_distinct_colors(n):
    colors = []
    # generate a random number from 0 to 1
    random_color_bias = random.random()

    for i in range(n):
        hue = float(i) / n
        hue += random_color_bias
        hue = hue % 1.0
        rgb = colorsys.hsv_to_rgb(hue, 1.0, 1.0)
        # Convert RGB values from [0, 1] range to [0, 255]
        colors.append(tuple(int(val * 255) for val in rgb))
    return colors


def overlap_masks(masks):
    """
    Overlap masks to generate a single mask for visualization.

    Parameters:
        - masks: list of np.arrays of shape (H, W) representing binary masks
          for each class.

    Returns:
    - overlap_mask: list of np.array of shape (H, W) that have no overlaps
    """
    overlap_mask = torch.zeros_like(masks[0])
    for mask_idx, mask in enumerate(masks):
        overlap_mask[mask > 0] = mask_idx + 1

    clean_masks = [
        overlap_mask == mask_idx + 1 for mask_idx in range(len(masks))
    ]
    clean_masks = torch.stack(clean_masks, dim=0)

    return clean_masks


def visualize_segmentation(
    image, masks, class_names, alpha=0.45, y_list=None, x_list=None
):
    """
    Visualize segmentation masks on an image.

    Parameters:
        - image: np.array of shape (H, W, 3) representing the RGB image
        - masks: list of np.arrays of shape (H, W) representing binary masks
          for each class.
        - class_names: list of strings representing names of each class
        - alpha: float, transparency level of masks on the image

    Returns:
    - visualization: plt.figure object
    """
    # Create a figure and axis
    fig, ax = plt.subplots(1, figsize=(12, 9))
    # Display the image
    # ax.imshow(image)
    # Generate distinct colors for each mask
    final_mask = np.zeros(
        (masks.shape[1], masks.shape[2], 3), dtype=np.float32
    )
    colors = generate_distinct_colors(len(class_names))
    idx = 0
    for mask, color, class_name in zip(masks, colors, class_names):
        # Overlay the mask
        final_mask += np.dstack([mask * c for c in color])
        # Find a representative point (e.g., centroid) for placing the label
        if y_list is None or x_list is None:
            y, x = np.argwhere(mask).mean(axis=0)
        else:
            y, x = y_list[idx], x_list[idx]
        ax.text(
            x,
            y,
            class_name,
            color="white",
            fontsize=36,
            va="center",
            ha="center",
            bbox=dict(facecolor="black", alpha=0.7, edgecolor="none"),
        )

        idx += 1

    final_image = image * (1 - alpha) + final_mask * alpha
    final_image = final_image.astype(np.uint8)
    ax.imshow(final_image)
    # Remove axis ticks and labels
    ax.axis("off")
    return fig


def get_sam_masks(config, image_path, masks, img_sam=None, pipeline=None):
    print("generating sam masks online")
    mask_tensor, mask_list = generate_masks_from_sam(
        image_path,
        save_path="./",
        pipeline=pipeline,
        img_sam=img_sam,
        visualize=False,
    )
    mask_tensor = mask_tensor.to(masks.device)
    # only conduct sam on masks that is not all zero
    attn_map, mask_ids = [], []
    for mask_id, mask in enumerate(masks):
        if torch.sum(mask) > 0:
            attn_map.append(mask.unsqueeze(0))
            mask_ids.append(mask_id)
    matched_masks = [
        match_masks(
            mask_tensor,
            attn,
            mask_list,
            iom_thres=config.car.iom_thres,
            min_pred_threshold=config.sam.min_pred_threshold,
        )
        for attn in attn_map
    ]
    for matched_mask, mask_id in zip(matched_masks, mask_ids):
        sam_masks = np.array([item["segmentation"] for item in matched_mask])
        sam_mask = np.any(sam_masks, axis=0)
        masks[mask_id] = torch.from_numpy(sam_mask).to(masks.device)
    return masks


def load_sam(config, sam_device):
    sam_checkpoint, model_type = build_sam_config(config)
    pipelines = SAMPipeline(
        sam_checkpoint,
        model_type,
        device=sam_device,
        points_per_side=config.sam.points_per_side,
        pred_iou_thresh=config.sam.pred_iou_thresh,
        stability_score_thresh=config.sam.stability_score_thresh,
        box_nms_thresh=config.sam.box_nms_thresh,
    )
    return pipelines


if __name__ == "__main__":
    parser = argparse.ArgumentParser("CaR")
    # default arguments

    # additional arguments
    parser.add_argument(
        "--output_path", type=str, default="", help="path to save outputs"
    )
    parser.add_argument(
        "--cfg-path",
        default="configs/voc_test.yaml",
        help="path to configuration file.",
    )
    args = parser.parse_args()

    cfg = Config(**load_yaml(args.cfg_path))
    device = "cuda" if torch.cuda.is_available() else "cpu"
    # device = 'cpu'
    folder_name = reduce(
        lambda x, y: x.replace(" ", "_") + "_" + y, cfg.image_caption
    )
    if len(folder_name) > 20:
        folder_name = folder_name[:20]

    car_model = CaR(
        cfg, visualize=True, seg_mode=cfg.test.seg_mode, device=device
    )

    sam_pipeline = load_sam(cfg, device)

    img = Image.open(cfg.image_path).convert("RGB")
    import pdb; pdb.set_trace()
    # resize image by dividing 2 if the size is larger than 1000
    if img.size[0] > 1000:
        img = img.resize((img.size[0] // 3, img.size[1] // 3))

    label_space = cfg.image_caption
    pseudo_masks, scores, _ = car_model(img, label_space)


    if not cfg.test.use_pseudo:
        t1 = time.time()
        pseudo_masks = get_sam_masks(
            cfg,
            cfg.image_path,
            pseudo_masks,
            img_sam=np.array(img),
            pipeline=sam_pipeline,
        )
        pseudo_masks = overlap_masks(pseudo_masks)
        t2 = time.time()
        print(f"sam time: {t2 - t1}")

    # visualize segmentation masks
    demo_fig = visualize_segmentation(
        np.array(img),
        pseudo_masks.detach().cpu().numpy(),
        label_space,
    )
    save_path = f"vis_results/{folder_name}"
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    demo_fig.savefig(os.path.join(save_path, "demo.png"), bbox_inches="tight")

    print(f"results saved to {save_path}.")