|
from huggingface_hub import from_pretrained_fastai |
|
import gradio as gr |
|
from fastai.vision.all import * |
|
|
|
|
|
|
|
|
|
repo_id = "kevanme/Practica1" |
|
|
|
learner = from_pretrained_fastai(repo_id) |
|
labels = learner.dls.vocab |
|
|
|
|
|
def predict(img): |
|
|
|
pred,pred_idx,probs = learner.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
|
|
gr.Interface(fn=predict, inputs=gr.Image(type="pil", image_mode="RGBA"), outputs=gr.Label(num_top_classes=3),examples=['0000118560.jpg','1000827761.jpg']).launch(share=False) |
|
|
|
|
|
|