File size: 6,029 Bytes
202eff6
 
 
 
 
 
 
 
 
 
 
 
6ba63c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# -*- coding: utf-8 -*-
"""biomedparse_inference_demo.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1jL4wvdtBWz6G_yBkFn8tyDD0hV1RtKVZ

# BiomedParse Inference Demo Notebook

Welcome to the demo notebook for BiomedParse, a comprehensive tool for biomedical image analysis. BiomedParse is designed to simultaneously handle segmentation, detection, and recognition tasks across major biomedical image modalities, providing a unified solution for complex image analysis in biomedical research.

[[`Paper`](https://aka.ms/biomedparse-paper)] [[`Demo`](https://microsoft.github.io/BiomedParse/)] [[`Model`](https://huggingface.co/microsoft/BiomedParse)]  [[`Data`](https://huggingface.co/datasets/microsoft/BiomedParseData)]

## Model Checkpoint Access

The BiomedParse model checkpoint is hosted on [HuggingFace](https://huggingface.co/microsoft/BiomedParse). To access the model:

1. Visit the [model page](https://huggingface.co/microsoft/BiomedParse).
2. Make sure to review and accept the terms of use to gain access to the checkpoint.
3. Retrieve your HuggingFace access token from your user profile.

## Setting Up Access

To use the model, set your Hugging Face access token in the HF_TOKEN environment variable or as a Colab secret. This step ensures secure and authorized access to the model resources.
"""

# Set your Hugging Face access token in your environment
# import os
# os.environ['HF_TOKEN'] = 'your_huggingface_access_token_here'

# Or, if you are using Google Colab, set HF_TOKEN on Colab secrets.

from google.colab import userdata
import huggingface_hub

huggingface_hub.login(userdata.get('HF_TOKEN'))

from huggingface_hub import hf_hub_download

model_file = hf_hub_download(repo_id="microsoft/BiomedParse", filename="biomedparse_v1.pt", local_dir="pretrained")

print(f"Downloaded model file to: {model_file}")

"""## Environment Setup"""

!git clone https://github.com/microsoft/BiomedParse

!pip install -r BiomedParse/assets/requirements/requirements.txt

"""# Restart Colab Runtime"""

# Make sure to restart Colab runtime after installing dependencies
import os
try:
    import google.colab
    os._exit(0)
except ImportError:
    pass

import os
os.chdir('/content/BiomedParse')
print(os.getcwd())

"""## Load the model weights"""

from PIL import Image
import torch
import argparse
import numpy as np
from modeling.BaseModel import BaseModel
from modeling import build_model
from utilities.distributed import init_distributed # changed from utils
from utilities.arguments import load_opt_from_config_files
from utilities.constants import BIOMED_CLASSES
from inference_utils.inference import interactive_infer_image

conf_files = "configs/biomedparse_inference.yaml"
opt = load_opt_from_config_files([conf_files])
opt = init_distributed(opt)

model_file = "../pretrained/biomedparse_v1.pt"

model = BaseModel(opt, build_model(opt)).from_pretrained(model_file).eval().cuda()
with torch.no_grad():
    model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(BIOMED_CLASSES + ["background"], is_eval=True)

"""# Run Inference"""

# RGB image input of shape (H, W, 3). Currently only batch size 1 is supported.
image = Image.open('examples/Part_1_516_pathology_breast.png', formats=['png'])
image = image.convert('RGB')

# text prompts querying objects in the image. Multiple ones can be provided.
prompts = ['neoplastic cells', 'inflammatory cells']

pred_mask = interactive_infer_image(model, image, prompts)
pred_mask.shape

# load ground truth mask
gt_masks = []
for prompt in prompts:
    gt_mask = Image.open(f"examples/Part_1_516_pathology_breast_{prompt.replace(' ', '+')}.png", formats=['png'])
    gt_mask = 1*(np.array(gt_mask.convert('RGB'))[:,:,0] > 0)
    gt_masks.append(gt_mask)

# prediction with ground truth mask
for i, pred in enumerate(pred_mask):
    gt = gt_masks[i]
    dice = (1*(pred>0.5) & gt).sum() * 2.0 / (1*(pred>0.5).sum() + gt.sum())
    print(f'Dice score for {prompts[i]}: {dice:.4f}')

import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import matplotlib.patches as mpatches

def overlay_masks(image, masks, colors):
    overlay = image.copy()
    overlay = np.array(overlay, dtype=np.uint8)
    for mask, color in zip(masks, colors):
        overlay[mask > 0] = (overlay[mask > 0] * 0.4 + np.array(color) * 0.6).astype(np.uint8)
    return Image.fromarray(overlay)

def generate_colors(n):
    cmap = plt.get_cmap('tab10')
    colors = [tuple(int(255 * val) for val in cmap(i)[:3]) for i in range(n)]
    return colors

original_image = Image.open('examples/Part_1_516_pathology_breast.png').convert('RGB')

colors = generate_colors(len(prompts))

pred_overlay = overlay_masks(original_image, [1*(pred_mask[i] > 0.5) for i in range(len(prompts))], colors)

gt_overlay = overlay_masks(original_image, gt_masks, colors)

legend_patches = [mpatches.Patch(color=np.array(color) / 255, label=prompt) for color, prompt in zip(colors, prompts)]

fig, axes = plt.subplots(1, 3, figsize=(15, 5))
axes[0].imshow(original_image)
axes[0].set_title("Original Image")
axes[0].axis('off')

axes[1].imshow(pred_overlay)
axes[1].set_title("Predictions")
axes[1].axis('off')
axes[1].legend(handles=legend_patches, loc='upper right', fontsize='small')

axes[2].imshow(gt_overlay)
axes[2].set_title("Ground Truth")
axes[2].axis('off')
axes[2].legend(handles=legend_patches, loc='upper right', fontsize='small')

plt.tight_layout()
plt.show()