Spaces:
Sleeping
Sleeping
File size: 6,029 Bytes
202eff6 6ba63c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -*- coding: utf-8 -*-
"""biomedparse_inference_demo.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1jL4wvdtBWz6G_yBkFn8tyDD0hV1RtKVZ
# BiomedParse Inference Demo Notebook
Welcome to the demo notebook for BiomedParse, a comprehensive tool for biomedical image analysis. BiomedParse is designed to simultaneously handle segmentation, detection, and recognition tasks across major biomedical image modalities, providing a unified solution for complex image analysis in biomedical research.
[[`Paper`](https://aka.ms/biomedparse-paper)] [[`Demo`](https://microsoft.github.io/BiomedParse/)] [[`Model`](https://huggingface.co/microsoft/BiomedParse)] [[`Data`](https://huggingface.co/datasets/microsoft/BiomedParseData)]
## Model Checkpoint Access
The BiomedParse model checkpoint is hosted on [HuggingFace](https://huggingface.co/microsoft/BiomedParse). To access the model:
1. Visit the [model page](https://huggingface.co/microsoft/BiomedParse).
2. Make sure to review and accept the terms of use to gain access to the checkpoint.
3. Retrieve your HuggingFace access token from your user profile.
## Setting Up Access
To use the model, set your Hugging Face access token in the HF_TOKEN environment variable or as a Colab secret. This step ensures secure and authorized access to the model resources.
"""
# Set your Hugging Face access token in your environment
# import os
# os.environ['HF_TOKEN'] = 'your_huggingface_access_token_here'
# Or, if you are using Google Colab, set HF_TOKEN on Colab secrets.
from google.colab import userdata
import huggingface_hub
huggingface_hub.login(userdata.get('HF_TOKEN'))
from huggingface_hub import hf_hub_download
model_file = hf_hub_download(repo_id="microsoft/BiomedParse", filename="biomedparse_v1.pt", local_dir="pretrained")
print(f"Downloaded model file to: {model_file}")
"""## Environment Setup"""
!git clone https://github.com/microsoft/BiomedParse
!pip install -r BiomedParse/assets/requirements/requirements.txt
"""# Restart Colab Runtime"""
# Make sure to restart Colab runtime after installing dependencies
import os
try:
import google.colab
os._exit(0)
except ImportError:
pass
import os
os.chdir('/content/BiomedParse')
print(os.getcwd())
"""## Load the model weights"""
from PIL import Image
import torch
import argparse
import numpy as np
from modeling.BaseModel import BaseModel
from modeling import build_model
from utilities.distributed import init_distributed # changed from utils
from utilities.arguments import load_opt_from_config_files
from utilities.constants import BIOMED_CLASSES
from inference_utils.inference import interactive_infer_image
conf_files = "configs/biomedparse_inference.yaml"
opt = load_opt_from_config_files([conf_files])
opt = init_distributed(opt)
model_file = "../pretrained/biomedparse_v1.pt"
model = BaseModel(opt, build_model(opt)).from_pretrained(model_file).eval().cuda()
with torch.no_grad():
model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(BIOMED_CLASSES + ["background"], is_eval=True)
"""# Run Inference"""
# RGB image input of shape (H, W, 3). Currently only batch size 1 is supported.
image = Image.open('examples/Part_1_516_pathology_breast.png', formats=['png'])
image = image.convert('RGB')
# text prompts querying objects in the image. Multiple ones can be provided.
prompts = ['neoplastic cells', 'inflammatory cells']
pred_mask = interactive_infer_image(model, image, prompts)
pred_mask.shape
# load ground truth mask
gt_masks = []
for prompt in prompts:
gt_mask = Image.open(f"examples/Part_1_516_pathology_breast_{prompt.replace(' ', '+')}.png", formats=['png'])
gt_mask = 1*(np.array(gt_mask.convert('RGB'))[:,:,0] > 0)
gt_masks.append(gt_mask)
# prediction with ground truth mask
for i, pred in enumerate(pred_mask):
gt = gt_masks[i]
dice = (1*(pred>0.5) & gt).sum() * 2.0 / (1*(pred>0.5).sum() + gt.sum())
print(f'Dice score for {prompts[i]}: {dice:.4f}')
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import matplotlib.patches as mpatches
def overlay_masks(image, masks, colors):
overlay = image.copy()
overlay = np.array(overlay, dtype=np.uint8)
for mask, color in zip(masks, colors):
overlay[mask > 0] = (overlay[mask > 0] * 0.4 + np.array(color) * 0.6).astype(np.uint8)
return Image.fromarray(overlay)
def generate_colors(n):
cmap = plt.get_cmap('tab10')
colors = [tuple(int(255 * val) for val in cmap(i)[:3]) for i in range(n)]
return colors
original_image = Image.open('examples/Part_1_516_pathology_breast.png').convert('RGB')
colors = generate_colors(len(prompts))
pred_overlay = overlay_masks(original_image, [1*(pred_mask[i] > 0.5) for i in range(len(prompts))], colors)
gt_overlay = overlay_masks(original_image, gt_masks, colors)
legend_patches = [mpatches.Patch(color=np.array(color) / 255, label=prompt) for color, prompt in zip(colors, prompts)]
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
axes[0].imshow(original_image)
axes[0].set_title("Original Image")
axes[0].axis('off')
axes[1].imshow(pred_overlay)
axes[1].set_title("Predictions")
axes[1].axis('off')
axes[1].legend(handles=legend_patches, loc='upper right', fontsize='small')
axes[2].imshow(gt_overlay)
axes[2].set_title("Ground Truth")
axes[2].axis('off')
axes[2].legend(handles=legend_patches, loc='upper right', fontsize='small')
plt.tight_layout()
plt.show() |