Spaces:
Runtime error
Runtime error
import numpy as np | |
import tensorflow as tf | |
import gradio as gr | |
from huggingface_hub import from_pretrained_keras | |
# download the already pushed model | |
model = from_pretrained_keras("keras-io/structured-data-classification") | |
def convert_and_predict(age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca, thal): | |
# some conversions from the gradio interface are needed | |
sample_converted = { | |
"age": age, | |
"sex": sex, | |
"cp": cp+1, | |
"trestbps": trestbps, | |
"chol": chol, | |
"fbs": 0 if fbs<=120 else 1, | |
"restecg": restecg, | |
"thalach": thalach, | |
"exang": exang, | |
"oldpeak": oldpeak, | |
"slope": slope+1, | |
"ca": ca, | |
"thal": thal, | |
} | |
input_dict = {name: tf.convert_to_tensor([value]) for name, value in sample_converted.items()} | |
predictions = model.predict(input_dict) | |
return f'{predictions[0][0]:.2%}' | |
# the app uses slider and number fields for numerical inputs | |
# while radio buttons for the categoricals | |
inputs = [ | |
gr.Slider(minimum=1, maximum=120, step=1, label='age', value=60), | |
gr.Radio(choices=['female','male'], label='sex', type='index',value='male'), | |
gr.Radio(choices=['typical angina', | |
'atypical angina', | |
'non-anginal pain', | |
'asymptomatic'], | |
type='index', label=f'chest pain type', value='typical angina'), | |
gr.Number(label='blood pressure in mmHg', value=145), | |
gr.Number(label='serum cholestoral in mg/dl', value=233), | |
gr.Number(label='fasting blood sugar in mg/dl', value=150), | |
gr.Radio(choices=['normal','T-T wave abnormality','probable or definite left ventricular hypertrophy'], | |
label='resting ecg', type='index',value='probable or definite left ventricular hypertrophy'), | |
gr.Number(label='maximum heart rate achieved', value=150), | |
gr.Radio(choices=['no','yes',], type='index', label='exercise induced angina',value='no'), | |
gr.Number(label='ST depression induced by exercise relative to rest', value=2.3), | |
gr.Radio(choices=['psloping','flat','downsloping'], label='slope of the peak exercise ST segment', type='index', value='downsloping'), | |
gr.Number(label ='number of major vessels (0-3) colored by flourosopy',value=0), | |
gr.Radio(['normal','fixed','reversable'],label ='thal', value='fixed') | |
] | |
# the app outputs text | |
output = gr.Textbox(label='Probability of having a heart disease, as evaluated by our model:') | |
# it's good practice to pass examples, description and a title to guide users | |
title = "Structured Data Classification 🧮" | |
description = "Binary classification of structured data including numerical and categorical features for Heart Disease prediction." | |
article = "Author: <a href=\"https://huggingface.co/buio\">Marco Buiani</a>. Based on this <a href=\"https://keras.io/examples/structured_data/structured_data_classification_from_scratch/\">keras example</a> by <a href=\"https://twitter.com/fchollet\">François Chollet.</a> HuggingFace Model <a href=\"https://huggingface.co/buio/structured-data-classification\">here</a> " | |
examples = [[41, 'female', 'atypical angina', 130, 204, 100, 'normal', 150, 'yes', 1.4, 'psloping', 2, 'reversible'], | |
[63, 'male', 'typical angina', 145, 233, 150, 'T-T wave abnormality', 150, 'no', 2.3, 'flat', 0, 'fixed']] | |
gr.Interface(convert_and_predict, inputs, output, examples= examples, allow_flagging='never', | |
title=title, description=description, article=article, live=True).launch() |