buio's picture
Update app.py
d5f0837
import numpy as np
import tensorflow as tf
import gradio as gr
from huggingface_hub import from_pretrained_keras
# download the already pushed model
model = from_pretrained_keras("keras-io/structured-data-classification")
def convert_and_predict(age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca, thal):
# some conversions from the gradio interface are needed
sample_converted = {
"age": age,
"sex": sex,
"cp": cp+1,
"trestbps": trestbps,
"chol": chol,
"fbs": 0 if fbs<=120 else 1,
"restecg": restecg,
"thalach": thalach,
"exang": exang,
"oldpeak": oldpeak,
"slope": slope+1,
"ca": ca,
"thal": thal,
}
input_dict = {name: tf.convert_to_tensor([value]) for name, value in sample_converted.items()}
predictions = model.predict(input_dict)
return f'{predictions[0][0]:.2%}'
# the app uses slider and number fields for numerical inputs
# while radio buttons for the categoricals
inputs = [
gr.Slider(minimum=1, maximum=120, step=1, label='age', value=60),
gr.Radio(choices=['female','male'], label='sex', type='index',value='male'),
gr.Radio(choices=['typical angina',
'atypical angina',
'non-anginal pain',
'asymptomatic'],
type='index', label=f'chest pain type', value='typical angina'),
gr.Number(label='blood pressure in mmHg', value=145),
gr.Number(label='serum cholestoral in mg/dl', value=233),
gr.Number(label='fasting blood sugar in mg/dl', value=150),
gr.Radio(choices=['normal','T-T wave abnormality','probable or definite left ventricular hypertrophy'],
label='resting ecg', type='index',value='probable or definite left ventricular hypertrophy'),
gr.Number(label='maximum heart rate achieved', value=150),
gr.Radio(choices=['no','yes',], type='index', label='exercise induced angina',value='no'),
gr.Number(label='ST depression induced by exercise relative to rest', value=2.3),
gr.Radio(choices=['psloping','flat','downsloping'], label='slope of the peak exercise ST segment', type='index', value='downsloping'),
gr.Number(label ='number of major vessels (0-3) colored by flourosopy',value=0),
gr.Radio(['normal','fixed','reversable'],label ='thal', value='fixed')
]
# the app outputs text
output = gr.Textbox(label='Probability of having a heart disease, as evaluated by our model:')
# it's good practice to pass examples, description and a title to guide users
title = "Structured Data Classification 🧮"
description = "Binary classification of structured data including numerical and categorical features for Heart Disease prediction."
article = "Author: <a href=\"https://huggingface.co/buio\">Marco Buiani</a>. Based on this <a href=\"https://keras.io/examples/structured_data/structured_data_classification_from_scratch/\">keras example</a> by <a href=\"https://twitter.com/fchollet\">François Chollet.</a> HuggingFace Model <a href=\"https://huggingface.co/buio/structured-data-classification\">here</a> "
examples = [[41, 'female', 'atypical angina', 130, 204, 100, 'normal', 150, 'yes', 1.4, 'psloping', 2, 'reversible'],
[63, 'male', 'typical angina', 145, 233, 150, 'T-T wave abnormality', 150, 'no', 2.3, 'flat', 0, 'fixed']]
gr.Interface(convert_and_predict, inputs, output, examples= examples, allow_flagging='never',
title=title, description=description, article=article, live=True).launch()