ctc_asr / app.py
anuragshas's picture
add application file
609963b
import gradio as gr
import numpy as np
import tensorflow as tf
from tensorflow import keras
import tensorflow_io as tfio
from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("keras-io/ctc_asr", compile=False)
characters = [x for x in "abcdefghijklmnopqrstuvwxyz'?! "]
# Mapping characters to integers
char_to_num = keras.layers.StringLookup(vocabulary=characters, oov_token="")
# Mapping integers back to original characters
num_to_char = keras.layers.StringLookup(
vocabulary=char_to_num.get_vocabulary(), oov_token="", invert=True
)
# An integer scalar Tensor. The window length in samples.
frame_length = 256
# An integer scalar Tensor. The number of samples to step.
frame_step = 160
# An integer scalar Tensor. The size of the FFT to apply.
# If not provided, uses the smallest power of 2 enclosing frame_length.
fft_length = 384
SAMPLE_RATE = 22050
def decode_batch_predictions(pred):
input_len = np.ones(pred.shape[0]) * pred.shape[1]
# Use greedy search. For complex tasks, you can use beam search
results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0]
# Iterate over the results and get back the text
output_text = []
for result in results:
result = tf.strings.reduce_join(num_to_char(result)).numpy().decode("utf-8")
output_text.append(result)
return output_text
def load_16k_audio_wav(filename):
# Read file content
file_content = tf.io.read_file(filename)
# Decode audio wave
audio_wav, sample_rate = tf.audio.decode_wav(file_content, desired_channels=1)
audio_wav = tf.squeeze(audio_wav, axis=-1)
sample_rate = tf.cast(sample_rate, dtype=tf.int64)
# Resample to 16k
audio_wav = tfio.audio.resample(
audio_wav, rate_in=sample_rate, rate_out=SAMPLE_RATE
)
return audio_wav
def mic_to_tensor(recorded_audio_file):
sample_rate, audio = recorded_audio_file
audio_wav = tf.constant(audio, dtype=tf.float32)
if tf.rank(audio_wav) > 1:
audio_wav = tf.reduce_mean(audio_wav, axis=1)
audio_wav = tfio.audio.resample(
audio_wav, rate_in=sample_rate, rate_out=SAMPLE_RATE
)
audio_wav = tf.divide(audio_wav, tf.reduce_max(tf.abs(audio_wav)))
return audio_wav
def tensor_to_predictions(audio_tensor):
# 3. Change type to float
audio_tensor = tf.cast(audio_tensor, tf.float32)
# 4. Get the spectrogram
spectrogram = tf.signal.stft(
audio_tensor,
frame_length=frame_length,
frame_step=frame_step,
fft_length=fft_length,
)
# 5. We only need the magnitude, which can be derived by applying tf.abs
spectrogram = tf.abs(spectrogram)
spectrogram = tf.math.pow(spectrogram, 0.5)
# 6. normalisation
means = tf.math.reduce_mean(spectrogram, 1, keepdims=True)
stddevs = tf.math.reduce_std(spectrogram, 1, keepdims=True)
spectrogram = (spectrogram - means) / (stddevs + 1e-10)
spectrogram = tf.expand_dims(spectrogram, axis=0)
batch_predictions = model.predict(spectrogram)
batch_predictions = decode_batch_predictions(batch_predictions)
return batch_predictions
def clear_inputs_and_outputs():
return [None, None, None]
def predict(recorded_audio_file, uploaded_audio_file):
# 1. Read wav file
if recorded_audio_file:
audio_tensor = mic_to_tensor(recorded_audio_file)
else:
audio_tensor = load_16k_audio_wav(uploaded_audio_file)
prediction = tensor_to_predictions(audio_tensor)[0]
return prediction
# gr.Interface(
# infer,
# inputs=gr.Audio(source="microphone", type="filepath"),
# outputs=gr.Textbox(lines=5, label="Input Text"),
# #title=title,
# #description=description,
# #article=article,
# #examples=examples,
# enable_queue=True,
# ).launch(debug=True)
# Main function
if __name__ == "__main__":
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
<center><h1>Automatic Speech Recognition using CTC</h1></center> \
This space is a demo of Automatic Speech Recognition using Keras trained on LJSpeech dataset.<br> \
In this space, you can record your voice or upload a wav file and the model will predict the words spoken in English<br><br>
"""
)
with gr.Row():
## Input
with gr.Column():
mic_input = gr.Audio(source="microphone", label="Record your own voice")
upl_input = gr.Audio(
source="upload", type="filepath", label="Upload a wav file"
)
with gr.Row():
clr_btn = gr.Button(value="Clear", variant="secondary")
prd_btn = gr.Button(value="Predict")
# Outputs
with gr.Column():
lbl_output = gr.Label(label="Text")
# Credits
with gr.Row():
gr.Markdown(
"""
<h4>Credits</h4>
Author: <a href="https://twitter.com/anuragcomm"> Anurag Singh</a>.<br>
Based on the following Keras example <a href="https://keras.io/examples/audio/ctc_asr">Automatic Speech Recognition using CTC</a> by <a href="https://rbouadjenek.github.io/">Mohamed Reda Bouadjenek</a> and <a href="https://www.linkedin.com/in/parkerhuynh/">Ngoc Dung Huynh</a><br>
Check out the model <a href="https://huggingface.co/keras-io/ctc_asr">here</a>
"""
)
clr_btn.click(
fn=clear_inputs_and_outputs,
inputs=[],
outputs=[mic_input, upl_input, lbl_output],
)
prd_btn.click(
fn=predict,
inputs=[mic_input, upl_input],
outputs=[lbl_output],
)
demo.launch(debug=True)