cct / app.py
EdoAbati's picture
updated urls
b143557
raw
history blame
2.18 kB
import gradio as gr
from huggingface_hub import from_pretrained_keras
import tensorflow as tf
CLASSES = {
0: "airplane",
1: "automobile",
2: "bird",
3: "cat",
4: "deer",
5: "dog",
6: "frog",
7: "horse",
8: "ship",
9: "truck",
}
IMAGE_SIZE = 32
model = from_pretrained_keras("EdoAbati/cct")
def reshape_image(image):
image = tf.convert_to_tensor(image)
image.set_shape([None, None, 3])
image = tf.image.resize(images=image, size=[IMAGE_SIZE, IMAGE_SIZE])
image = tf.expand_dims(image, axis=0)
return image
def classify_image(input_image):
input_image = reshape_image(input_image)
logits = model.predict(input_image).flatten()
predictions = tf.nn.softmax(logits)
output_labels = {CLASSES[i]: float(predictions[i]) for i in CLASSES.keys()}
return output_labels
# Gradio Interface
examples = [["./bird.png"], ["./cat.png"], ["./dog.png"], ["./horse.png"]]
title = "Image Classification using Compact Convolutional Transformer (CCT)"
description = """
Upload an image or select one from the examples and ask the model to label it!
<br />
The model was trained on the <a href="https://www.cs.toronto.edu/~kriz/cifar.html" target="_blank">CIFAR-10 dataset</a>. Therefore, it is able to recognise these 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck.
<br />
<br />
<p>
<b>Model:</b> <a href="https://huggingface.co/keras-io/cct" target="_blank">https://huggingface.co/keras-io/cct</a>
<br />
<b>Keras Example:</b> <a href="https://keras.io/examples/vision/cct/" target="_blank">https://keras.io/examples/vision/cct/</a>
</p>
<br />
"""
article = """
<div style="text-align: center;">
Space by <a href="https://github.com/EdAbati" target="_blank">Edoardo Abati</a>
<br />
Keras example by <a href="https://twitter.com/RisingSayak" target="_blank">Sayak Paul</a>
</div>
"""
interface = gr.Interface(
fn=classify_image,
inputs=gr.inputs.Image(),
outputs=gr.outputs.Label(),
examples=examples,
title=title,
description=description,
article=article,
allow_flagging="never",
)
interface.launch(enable_queue=True)