Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
from huggingface_hub import from_pretrained_keras | |
import numpy as np | |
adamatch_model = from_pretrained_keras("keras-io/adamatch-domain-adaption") | |
base_model = from_pretrained_keras("johko/wideresnet28-2-mnist") | |
labels = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] | |
def predict_image(image, model): | |
image = tf.constant(image) | |
image = tf.reshape(image, [-1, 32, 32, 3]) | |
probs_ada_mnist = model.predict(image)[0,:] | |
top_pred = probs_ada_mnist.tolist() | |
return {labels[i]: top_pred[i] for i in range(10)} | |
def infer(mnist_img, svhn_img, model): | |
labels_out = [] | |
for im in [mnist_img, svhn_img]: | |
labels_out.append(predict_image(im, model)) | |
return labels_out | |
def infer_ada(mnist_image, svhn_image): | |
return infer(mnist_image, svhn_image, adamatch_model) | |
def infer_base(mnist_image, svhn_image): | |
return infer(mnist_image, svhn_image, base_model) | |
def infer_all(mnist_image, svhn_image): | |
base_res = infer_base(mnist_image, svhn_image) | |
ada_res = infer_ada(mnist_image, svhn_image) | |
return base_res.extend(ada_res) | |
article = """<center> | |
Authors: <a href='https://twitter.com/johko990' target='_blank'>Johannes Kolbe</a> based on an example by [Sayak Paul](https://twitter.com/RisingSayak) on | |
<a href='https://keras.io/examples/vision/adamatch/' target='_blank'>**keras.io**</a>""" | |
description = """<center> | |
This space lets you compare image classification results of identical architecture (WideResNet-2-28) models. The training of one of the models was improved | |
by using AdaMatch as seen in the example on [keras.io](https://keras.io/examples/vision/adamatch/). | |
The base model was only trained on the MNIST dataset and shows a low classification accuracy (8.96%) for a different domain dataset like SVHN. The AdaMatch model | |
uses a semi-supervised domain adaption approach to adapt to the SVHN dataset and shows a significantly higher accuracy (26.51%). | |
""" | |
mnist_image_base = gr.inputs.Image(shape=(32, 32)) | |
svhn_image_base = gr.inputs.Image(shape=(32, 32)) | |
mnist_image_ada = gr.inputs.Image(shape=(32, 32)) | |
svhn_image_ada = gr.inputs.Image(shape=(32, 32)) | |
label_mnist_base = gr.outputs.Label(num_top_classes=3, label="MNIST Prediction Base") | |
label_svhn_base = gr.outputs.Label(num_top_classes=3, label="SVHN Prediction Base") | |
label_mnist_ada = gr.outputs.Label(num_top_classes=3, label="MNIST Prediction AdaMatch") | |
label_svhn_ada = gr.outputs.Label(num_top_classes=3, label="SVHN Prediction AdaMatch") | |
base_iface = gr.Interface( | |
fn=infer_base, | |
inputs=[mnist_image_base, svhn_image_base], | |
outputs=[label_mnist_base,label_svhn_base] | |
) | |
ada_iface = gr.Interface( | |
fn=infer_ada, | |
inputs=[mnist_image_ada, svhn_image_ada], | |
outputs=[label_mnist_ada,label_svhn_ada] | |
) | |
gr.Parallel(base_iface, | |
ada_iface, | |
examples=[ | |
["examples/mnist_3.jpg", "examples/svhn_3.jpeg"], | |
["examples/mnist_8.jpg", "examples/svhn_8.jpg"] | |
], | |
title="Semi-Supervised Domain Adaption with AdaMatch", | |
article=article, | |
description=description, | |
).launch() | |