Johannes Kolbe
working space
b28a8cb
raw
history blame
3.15 kB
import gradio as gr
import tensorflow as tf
from huggingface_hub import from_pretrained_keras
import numpy as np
adamatch_model = from_pretrained_keras("johko/adamatch-keras-io")
base_model = from_pretrained_keras("johko/wideresnet28-2-mnist")
labels = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
def predict_image(image, model):
image = tf.constant(image)
image = tf.reshape(image, [-1, 32, 32, 3])
probs_ada_mnist = model.predict(image)[0,:]
top_pred = probs_ada_mnist.tolist()
return {labels[i]: top_pred[i] for i in range(10)}
def infer(mnist_img, svhn_img, model):
labels_out = []
for im in [mnist_img, svhn_img]:
labels_out.append(predict_image(im, model))
return labels_out
def infer_ada(mnist_image, svhn_image):
return infer(mnist_image, svhn_image, adamatch_model)
def infer_base(mnist_image, svhn_image):
return infer(mnist_image, svhn_image, base_model)
def infer_all(mnist_image, svhn_image):
base_res = infer_base(mnist_image, svhn_image)
ada_res = infer_ada(mnist_image, svhn_image)
return base_res.extend(ada_res)
article = """<center>
Authors: <a href='https://twitter.com/johko990' target='_blank'>Johannes Kolbe</a> based on an example by [Sayak Paul](https://twitter.com/RisingSayak) on
<a href='https://keras.io/examples/vision/adamatch/' target='_blank'>**keras.io**</a>"""
description = """<center>
This space lets you compare image classification results of identical architecture (WideResNet-2-28) models. The training of one of the models was improved
by using AdaMatch as seen in the example on [keras.io](https://keras.io/examples/vision/adamatch/).
The base model was only trained on the MNIST dataset and shows a low classification accuracy (8.96%) for a different domain dataset like SVHN. The AdaMatch model
uses a semi-supervised domain adaption approach to adapt to the SVHN dataset and shows a significantly higher accuracy (26.51%).
"""
mnist_image_base = gr.inputs.Image(shape=(32, 32))
svhn_image_base = gr.inputs.Image(shape=(32, 32))
mnist_image_ada = gr.inputs.Image(shape=(32, 32))
svhn_image_ada = gr.inputs.Image(shape=(32, 32))
label_mnist_base = gr.outputs.Label(num_top_classes=3, label="MNIST Prediction Base")
label_svhn_base = gr.outputs.Label(num_top_classes=3, label="SVHN Prediction Base")
label_mnist_ada = gr.outputs.Label(num_top_classes=3, label="MNIST Prediction AdaMatch")
label_svhn_ada = gr.outputs.Label(num_top_classes=3, label="SVHN Prediction AdaMatch")
base_iface = gr.Interface(
fn=infer_base,
inputs=[mnist_image_base, svhn_image_base],
outputs=[label_mnist_base,label_svhn_base]
)
ada_iface = gr.Interface(
fn=infer_ada,
inputs=[mnist_image_ada, svhn_image_ada],
outputs=[label_mnist_ada,label_svhn_ada]
)
gr.Parallel(base_iface,
ada_iface,
examples=[
["examples/mnist_3.jpg", "examples/svhn_3.jpeg"],
["examples/mnist_8.jpg", "examples/svhn_8.jpg"]
],
title="Domain Adaption with AdaMatch",
article=article,
description=description,
).launch()