Spaces:
Sleeping
Sleeping
import spaces | |
from dotenv import load_dotenv | |
load_dotenv() | |
import re | |
from urllib.parse import urlparse, parse_qs | |
import pandas as pd | |
import unicodedata as uni | |
import emoji | |
from langchain_openai import ChatOpenAI | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.document_loaders import DataFrameLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain.chains import RetrievalQA | |
from tokopedia import request_product_id, request_product_review | |
import gradio as gr | |
shop_id = "" | |
item_id = "" | |
item = {} | |
LIMIT = 1000 # Limit to 1000 reviews so that processing does not take too long | |
import logging | |
# Configure logging | |
logging.basicConfig( | |
level=logging.DEBUG, | |
format="%(asctime)s [%(levelname)s] %(message)s", | |
handlers=[logging.StreamHandler()], | |
) | |
logger = logging.getLogger(__name__) | |
def scrape(product_id, max_reviews=LIMIT): | |
all_reviews = [] | |
page = 1 | |
has_next = True | |
logger.info("Extracting product reviews...") | |
while has_next and len(all_reviews) <= max_reviews: | |
response = request_product_review(product_id, page=page) | |
data = response.json()["data"]["productrevGetProductReviewList"] | |
reviews = data["list"] | |
all_reviews.extend(reviews) | |
has_next = data["hasNext"] | |
page += 1 | |
reviews_df = pd.json_normalize(all_reviews) | |
reviews_df.rename(columns={"message": "comment"}, inplace=True) | |
reviews_df = reviews_df[["comment"]] | |
logger.info(reviews_df.head()) | |
return reviews_df | |
def get_product_id(URL): | |
parsed_url = urlparse(URL) | |
*_, SHOP, PRODUCT_KEY = parsed_url.path.split("/") | |
product_id = request_product_id(SHOP, PRODUCT_KEY).json()["data"]["pdpGetLayout"][ | |
"basicInfo" | |
]["id"] | |
logger.info(product_id) | |
return product_id | |
# Clean | |
def clean(df): | |
df = df.dropna().copy().reset_index(drop=True) # drop reviews with empty comments | |
df = df[df["comment"] != ""].reset_index(drop=True) # remove empty reviews | |
df["comment"] = df["comment"].apply(lambda x: clean_text(x)) # clean text | |
df = df[df["comment"] != ""].reset_index(drop=True) # remove empty reviews | |
logger.info("cleaned") | |
return df | |
def clean_text(text): | |
text = uni.normalize("NFKD", text) # normalise characters | |
text = emoji.replace_emoji(text, "") # remove emoji | |
text = re.sub(r"(\w)\1{2,}", r"\1", text) # repeated chars | |
text = re.sub(r"[ ]+", " ", text).strip() # remove extra spaces | |
return text | |
# LLM | |
OpenAIModel = "gpt-3.5-turbo" | |
llm = ChatOpenAI(model=OpenAIModel, temperature=0.1) | |
# Embeddings | |
embeddings = HuggingFaceEmbeddings(model_name="LazarusNLP/all-indobert-base-v2") | |
cache_URL = "" | |
db = None | |
qa = None | |
cache = {} | |
async def generate(URL, query): | |
global cache_URL, db, qa, cache | |
if URL == "" or query == "": | |
return "Empty input" | |
else: | |
try: | |
product_id = get_product_id(URL) | |
if URL not in cache: | |
# Get reviews | |
try: | |
reviews = scrape(product_id) | |
# Clean reviews | |
cleaned_reviews = clean(reviews) | |
# Load data | |
loader = DataFrameLoader( | |
cleaned_reviews, page_content_column="comment" | |
) | |
documents = loader.load() | |
except Exception as e: | |
return "Error getting reviews: " + str(e) | |
else: | |
# Split text | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, chunk_overlap=50 | |
) | |
docs = text_splitter.split_documents(documents) | |
# Vector store | |
db = FAISS.from_documents(docs, embeddings) | |
# Store in cache | |
cache[URL] = (docs, db) | |
# Retrieve from cache | |
docs, db = cache[URL] | |
# Chain to answer questions | |
qa = RetrievalQA.from_chain_type(llm=llm, retriever=db.as_retriever()) | |
res = await qa.ainvoke(query) | |
# Process result | |
return res["result"] | |
except: | |
return "URL tidak valid" | |
# Gradio | |
product_box = gr.Textbox(label="URL Produk", placeholder="URL produk dari Tokopedia") | |
query_box = gr.Textbox( | |
lines=2, | |
label="Kueri", | |
placeholder="Contoh: Apa yang orang katakan tentang kualitas produknya?, Bagaimana pendapat orang yang kurang puas dengan produknya?", | |
) | |
gr.Interface( | |
fn=generate, | |
inputs=[product_box, query_box], | |
outputs=[gr.Textbox(label="Jawaban")], | |
title="RingkasUlas", | |
description="Bot percakapan yang bisa meringkas ulasan-ulasan produk di Tokopedia Indonesia (https://tokopedia.com/). Harap bersabar, bot ini dapat memakan waktu agak lama saat mengambil ulasan dari Tokopedia dan menyiapkan jawabannya.", | |
allow_flagging="never", | |
).launch(debug=True) | |