Spaces:
Sleeping
Sleeping
File size: 5,080 Bytes
9cb4e8f 286516b c66df08 27e0ec6 286516b 27e0ec6 286516b d050f83 a33de26 d050f83 36ab1a9 3885d1d 2577f1f 3885d1d d050f83 3885d1d d050f83 3885d1d 36ab1a9 286516b d050f83 286516b 333b8cd 286516b 3885d1d 286516b 3885d1d 286516b 3885d1d d050f83 3885d1d d050f83 3885d1d 286516b 3885d1d 286516b 8464276 286516b 7f75ebb 6e16551 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
from dotenv import load_dotenv
load_dotenv()
import re
from urllib.parse import urlparse, parse_qs
import pandas as pd
import unicodedata as uni
import emoji
from langchain_openai import ChatOpenAI
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.document_loaders import DataFrameLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
from tokopedia import request_product_id, request_product_review
import gradio as gr
shop_id = ""
item_id = ""
item = {}
LIMIT = 1000 # Limit to 1000 reviews so that processing does not take too long
import logging
# Configure logging
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[logging.StreamHandler()],
)
logger = logging.getLogger(__name__)
def scrape(product_id, max_reviews=LIMIT):
all_reviews = []
page = 1
has_next = True
logger.info("Extracting product reviews...")
while has_next and len(all_reviews) <= max_reviews:
response = request_product_review(product_id, page=page)
data = response.json()["data"]["productrevGetProductReviewList"]
reviews = data["list"]
all_reviews.extend(reviews)
has_next = data["hasNext"]
page += 1
reviews_df = pd.json_normalize(all_reviews)
reviews_df.rename(columns={"message": "comment"}, inplace=True)
reviews_df = reviews_df[["comment"]]
logger.info(reviews_df.head())
return reviews_df
def get_product_id(URL):
parsed_url = urlparse(URL)
*_, SHOP, PRODUCT_KEY = parsed_url.path.split("/")
product_id = request_product_id(SHOP, PRODUCT_KEY).json()["data"]["pdpGetLayout"][
"basicInfo"
]["id"]
logger.info(product_id)
return product_id
# Clean
def clean(df):
df = df.dropna().copy().reset_index(drop=True) # drop reviews with empty comments
df = df[df["comment"] != ""].reset_index(drop=True) # remove empty reviews
df["comment"] = df["comment"].apply(lambda x: clean_text(x)) # clean text
df = df[df["comment"] != ""].reset_index(drop=True) # remove empty reviews
logger.info("cleaned")
return df
def clean_text(text):
text = uni.normalize("NFKD", text) # normalise characters
text = emoji.replace_emoji(text, "") # remove emoji
text = re.sub(r"(\w)\1{2,}", r"\1", text) # repeated chars
text = re.sub(r"[ ]+", " ", text).strip() # remove extra spaces
return text
# LLM
OpenAIModel = "gpt-3.5-turbo"
llm = ChatOpenAI(model=OpenAIModel, temperature=0.1)
# Embeddings
embeddings = HuggingFaceEmbeddings(model_name="LazarusNLP/all-indobert-base-v2")
cache_URL = ""
db = None
qa = None
async def generate(URL, query):
global cache_URL, db, qa
if URL == "" or query == "":
return "Empty input"
else:
try:
product_id = get_product_id(URL)
if URL != cache_URL:
# Get reviews
try:
reviews = scrape(URL)
# Clean reviews
cleaned_reviews = clean(reviews)
# Load data
loader = DataFrameLoader(
cleaned_reviews, page_content_column="comment"
)
documents = loader.load()
except Exception as e:
return "Error getting reviews: " + str(e)
else:
# Split text
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=50
)
docs = text_splitter.split_documents(documents)
logger.info("split")
cache_URL = URL
# Vector store
db = FAISS.from_documents(docs, embeddings)
# Chain to answer questions
qa = RetrievalQA.from_chain_type(
llm=llm, retriever=db.as_retriever()
)
res = await qa.ainvoke(query)
logger.info("generated")
# Process result
return res["result"]
except:
return "URL tidak valid"
# Gradio
product_box = gr.Textbox(label="URL Produk", placeholder="URL produk dari Tokopedia")
query_box = gr.Textbox(
lines=2,
label="Kueri",
placeholder="Contoh: Apa yang orang katakan tentang kualitas produknya?, Bagaimana pendapat orang yang kurang puas dengan produknya?",
)
gr.Interface(
fn=generate,
inputs=[product_box, query_box],
outputs=[gr.Textbox(label="Jawaban")],
title="RingkasUlas",
description="Bot percakapan yang bisa meringkas ulasan-ulasan produk di Tokopedia Indonesia (https://tokopedia.com/). Harap bersabar, bot ini dapat memakan waktu agak lama saat mengambil ulasan dari Tokopedia dan menyiapkan jawabannya.",
allow_flagging="never",
).launch(debug=True)
|