Spaces:
Running
Running
import os, types | |
from enum import Enum | |
import json | |
import requests | |
import time | |
from typing import Callable, Optional, Any | |
import litellm | |
from litellm.utils import ModelResponse, EmbeddingResponse, get_secret, Usage | |
import sys | |
from copy import deepcopy | |
import httpx | |
from .prompt_templates.factory import prompt_factory, custom_prompt | |
class SagemakerError(Exception): | |
def __init__(self, status_code, message): | |
self.status_code = status_code | |
self.message = message | |
self.request = httpx.Request( | |
method="POST", url="https://us-west-2.console.aws.amazon.com/sagemaker" | |
) | |
self.response = httpx.Response(status_code=status_code, request=self.request) | |
super().__init__( | |
self.message | |
) # Call the base class constructor with the parameters it needs | |
class SagemakerConfig: | |
""" | |
Reference: https://d-uuwbxj1u4cnu.studio.us-west-2.sagemaker.aws/jupyter/default/lab/workspaces/auto-q/tree/DemoNotebooks/meta-textgeneration-llama-2-7b-SDK_1.ipynb | |
""" | |
max_new_tokens: Optional[int] = None | |
top_p: Optional[float] = None | |
temperature: Optional[float] = None | |
return_full_text: Optional[bool] = None | |
def __init__( | |
self, | |
max_new_tokens: Optional[int] = None, | |
top_p: Optional[float] = None, | |
temperature: Optional[float] = None, | |
return_full_text: Optional[bool] = None, | |
) -> None: | |
locals_ = locals() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return { | |
k: v | |
for k, v in cls.__dict__.items() | |
if not k.startswith("__") | |
and not isinstance( | |
v, | |
( | |
types.FunctionType, | |
types.BuiltinFunctionType, | |
classmethod, | |
staticmethod, | |
), | |
) | |
and v is not None | |
} | |
""" | |
SAGEMAKER AUTH Keys/Vars | |
os.environ['AWS_ACCESS_KEY_ID'] = "" | |
os.environ['AWS_SECRET_ACCESS_KEY'] = "" | |
""" | |
# set os.environ['AWS_REGION_NAME'] = <your-region_name> | |
def completion( | |
model: str, | |
messages: list, | |
model_response: ModelResponse, | |
print_verbose: Callable, | |
encoding, | |
logging_obj, | |
custom_prompt_dict={}, | |
hf_model_name=None, | |
optional_params=None, | |
litellm_params=None, | |
logger_fn=None, | |
): | |
import boto3 | |
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them | |
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None) | |
aws_access_key_id = optional_params.pop("aws_access_key_id", None) | |
aws_region_name = optional_params.pop("aws_region_name", None) | |
if aws_access_key_id != None: | |
# uses auth params passed to completion | |
# aws_access_key_id is not None, assume user is trying to auth using litellm.completion | |
client = boto3.client( | |
service_name="sagemaker-runtime", | |
aws_access_key_id=aws_access_key_id, | |
aws_secret_access_key=aws_secret_access_key, | |
region_name=aws_region_name, | |
) | |
else: | |
# aws_access_key_id is None, assume user is trying to auth using env variables | |
# boto3 automaticaly reads env variables | |
# we need to read region name from env | |
# I assume majority of users use .env for auth | |
region_name = ( | |
get_secret("AWS_REGION_NAME") | |
or "us-west-2" # default to us-west-2 if user not specified | |
) | |
client = boto3.client( | |
service_name="sagemaker-runtime", | |
region_name=region_name, | |
) | |
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker | |
inference_params = deepcopy(optional_params) | |
inference_params.pop("stream", None) | |
## Load Config | |
config = litellm.SagemakerConfig.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in inference_params | |
): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in | |
inference_params[k] = v | |
model = model | |
if model in custom_prompt_dict: | |
# check if the model has a registered custom prompt | |
model_prompt_details = custom_prompt_dict[model] | |
prompt = custom_prompt( | |
role_dict=model_prompt_details.get("roles", None), | |
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""), | |
final_prompt_value=model_prompt_details.get("final_prompt_value", ""), | |
messages=messages, | |
) | |
else: | |
if hf_model_name is None: | |
if "llama-2" in model.lower(): # llama-2 model | |
if "chat" in model.lower(): # apply llama2 chat template | |
hf_model_name = "meta-llama/Llama-2-7b-chat-hf" | |
else: # apply regular llama2 template | |
hf_model_name = "meta-llama/Llama-2-7b" | |
hf_model_name = ( | |
hf_model_name or model | |
) # pass in hf model name for pulling it's prompt template - (e.g. `hf_model_name="meta-llama/Llama-2-7b-chat-hf` applies the llama2 chat template to the prompt) | |
prompt = prompt_factory(model=hf_model_name, messages=messages) | |
data = json.dumps({"inputs": prompt, "parameters": inference_params}).encode( | |
"utf-8" | |
) | |
## LOGGING | |
request_str = f""" | |
response = client.invoke_endpoint( | |
EndpointName={model}, | |
ContentType="application/json", | |
Body={data}, | |
CustomAttributes="accept_eula=true", | |
) | |
""" # type: ignore | |
logging_obj.pre_call( | |
input=prompt, | |
api_key="", | |
additional_args={ | |
"complete_input_dict": data, | |
"request_str": request_str, | |
"hf_model_name": hf_model_name, | |
}, | |
) | |
## COMPLETION CALL | |
try: | |
response = client.invoke_endpoint( | |
EndpointName=model, | |
ContentType="application/json", | |
Body=data, | |
CustomAttributes="accept_eula=true", | |
) | |
except Exception as e: | |
raise SagemakerError(status_code=500, message=f"{str(e)}") | |
response = response["Body"].read().decode("utf8") | |
## LOGGING | |
logging_obj.post_call( | |
input=prompt, | |
api_key="", | |
original_response=response, | |
additional_args={"complete_input_dict": data}, | |
) | |
print_verbose(f"raw model_response: {response}") | |
## RESPONSE OBJECT | |
completion_response = json.loads(response) | |
try: | |
completion_response_choices = completion_response[0] | |
completion_output = "" | |
if "generation" in completion_response_choices: | |
completion_output += completion_response_choices["generation"] | |
elif "generated_text" in completion_response_choices: | |
completion_output += completion_response_choices["generated_text"] | |
# check if the prompt template is part of output, if so - filter it out | |
if completion_output.startswith(prompt) and "<s>" in prompt: | |
completion_output = completion_output.replace(prompt, "", 1) | |
model_response["choices"][0]["message"]["content"] = completion_output | |
except: | |
raise SagemakerError( | |
message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}", | |
status_code=500, | |
) | |
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here. | |
prompt_tokens = len(encoding.encode(prompt)) | |
completion_tokens = len( | |
encoding.encode(model_response["choices"][0]["message"].get("content", "")) | |
) | |
model_response["created"] = int(time.time()) | |
model_response["model"] = model | |
usage = Usage( | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
total_tokens=prompt_tokens + completion_tokens, | |
) | |
model_response.usage = usage | |
return model_response | |
# async def acompletion( | |
# client: Any, | |
# model_response: ModelResponse, | |
# model: str, | |
# logging_obj: Any, | |
# data: dict, | |
# hf_model_name: str, | |
# ): | |
# """ | |
# Use boto3 create_invocation_async endpoint | |
# """ | |
# ## LOGGING | |
# request_str = f""" | |
# response = client.invoke_endpoint( | |
# EndpointName={model}, | |
# ContentType="application/json", | |
# Body={data}, | |
# CustomAttributes="accept_eula=true", | |
# ) | |
# """ # type: ignore | |
# logging_obj.pre_call( | |
# input=data["prompt"], | |
# api_key="", | |
# additional_args={ | |
# "complete_input_dict": data, | |
# "request_str": request_str, | |
# "hf_model_name": hf_model_name, | |
# }, | |
# ) | |
# ## COMPLETION CALL | |
# try: | |
# response = client.invoke_endpoint( | |
# EndpointName=model, | |
# ContentType="application/json", | |
# Body=data, | |
# CustomAttributes="accept_eula=true", | |
# ) | |
# except Exception as e: | |
# raise SagemakerError(status_code=500, message=f"{str(e)}") | |
def embedding( | |
model: str, | |
input: list, | |
model_response: EmbeddingResponse, | |
print_verbose: Callable, | |
encoding, | |
logging_obj, | |
custom_prompt_dict={}, | |
optional_params=None, | |
litellm_params=None, | |
logger_fn=None, | |
): | |
""" | |
Supports Huggingface Jumpstart embeddings like GPT-6B | |
""" | |
### BOTO3 INIT | |
import boto3 | |
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them | |
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None) | |
aws_access_key_id = optional_params.pop("aws_access_key_id", None) | |
aws_region_name = optional_params.pop("aws_region_name", None) | |
if aws_access_key_id != None: | |
# uses auth params passed to completion | |
# aws_access_key_id is not None, assume user is trying to auth using litellm.completion | |
client = boto3.client( | |
service_name="sagemaker-runtime", | |
aws_access_key_id=aws_access_key_id, | |
aws_secret_access_key=aws_secret_access_key, | |
region_name=aws_region_name, | |
) | |
else: | |
# aws_access_key_id is None, assume user is trying to auth using env variables | |
# boto3 automaticaly reads env variables | |
# we need to read region name from env | |
# I assume majority of users use .env for auth | |
region_name = ( | |
get_secret("AWS_REGION_NAME") | |
or "us-west-2" # default to us-west-2 if user not specified | |
) | |
client = boto3.client( | |
service_name="sagemaker-runtime", | |
region_name=region_name, | |
) | |
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker | |
inference_params = deepcopy(optional_params) | |
inference_params.pop("stream", None) | |
## Load Config | |
config = litellm.SagemakerConfig.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in inference_params | |
): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in | |
inference_params[k] = v | |
#### HF EMBEDDING LOGIC | |
data = json.dumps({"text_inputs": input}).encode("utf-8") | |
## LOGGING | |
request_str = f""" | |
response = client.invoke_endpoint( | |
EndpointName={model}, | |
ContentType="application/json", | |
Body={data}, | |
CustomAttributes="accept_eula=true", | |
)""" # type: ignore | |
logging_obj.pre_call( | |
input=input, | |
api_key="", | |
additional_args={"complete_input_dict": data, "request_str": request_str}, | |
) | |
## EMBEDDING CALL | |
try: | |
response = client.invoke_endpoint( | |
EndpointName=model, | |
ContentType="application/json", | |
Body=data, | |
CustomAttributes="accept_eula=true", | |
) | |
except Exception as e: | |
raise SagemakerError(status_code=500, message=f"{str(e)}") | |
response = json.loads(response["Body"].read().decode("utf8")) | |
## LOGGING | |
logging_obj.post_call( | |
input=input, | |
api_key="", | |
original_response=response, | |
additional_args={"complete_input_dict": data}, | |
) | |
print_verbose(f"raw model_response: {response}") | |
if "embedding" not in response: | |
raise SagemakerError(status_code=500, message="embedding not found in response") | |
embeddings = response["embedding"] | |
if not isinstance(embeddings, list): | |
raise SagemakerError( | |
status_code=422, message=f"Response not in expected format - {embeddings}" | |
) | |
output_data = [] | |
for idx, embedding in enumerate(embeddings): | |
output_data.append( | |
{"object": "embedding", "index": idx, "embedding": embedding} | |
) | |
model_response["object"] = "list" | |
model_response["data"] = output_data | |
model_response["model"] = model | |
input_tokens = 0 | |
for text in input: | |
input_tokens += len(encoding.encode(text)) | |
model_response["usage"] = Usage( | |
prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens | |
) | |
return model_response | |