Spaces:
Running
Running
from enum import Enum | |
import requests, traceback | |
import json | |
from jinja2 import Template, exceptions, Environment, meta | |
from typing import Optional, Any | |
def default_pt(messages): | |
return " ".join(message["content"] for message in messages) | |
# alpaca prompt template - for models like mythomax, etc. | |
def alpaca_pt(messages): | |
prompt = custom_prompt( | |
role_dict={ | |
"system": { | |
"pre_message": "### Instruction:\n", | |
"post_message": "\n\n", | |
}, | |
"user": { | |
"pre_message": "### Instruction:\n", | |
"post_message": "\n\n", | |
}, | |
"assistant": {"pre_message": "### Response:\n", "post_message": "\n\n"}, | |
}, | |
bos_token="<s>", | |
eos_token="</s>", | |
messages=messages, | |
) | |
return prompt | |
# Llama2 prompt template | |
def llama_2_chat_pt(messages): | |
prompt = custom_prompt( | |
role_dict={ | |
"system": { | |
"pre_message": "[INST] <<SYS>>\n", | |
"post_message": "\n<</SYS>>\n [/INST]\n", | |
}, | |
"user": { # follow this format https://github.com/facebookresearch/llama/blob/77062717054710e352a99add63d160274ce670c6/llama/generation.py#L348 | |
"pre_message": "[INST] ", | |
"post_message": " [/INST]\n", | |
}, | |
"assistant": { | |
"post_message": "\n" # follows this - https://replicate.com/blog/how-to-prompt-llama | |
}, | |
}, | |
messages=messages, | |
bos_token="<s>", | |
eos_token="</s>", | |
) | |
return prompt | |
def ollama_pt( | |
model, messages | |
): # https://github.com/jmorganca/ollama/blob/af4cf55884ac54b9e637cd71dadfe9b7a5685877/docs/modelfile.md#template | |
if "instruct" in model: | |
prompt = custom_prompt( | |
role_dict={ | |
"system": {"pre_message": "### System:\n", "post_message": "\n"}, | |
"user": { | |
"pre_message": "### User:\n", | |
"post_message": "\n", | |
}, | |
"assistant": { | |
"pre_message": "### Response:\n", | |
"post_message": "\n", | |
}, | |
}, | |
final_prompt_value="### Response:", | |
messages=messages, | |
) | |
elif "llava" in model: | |
prompt = "" | |
images = [] | |
for message in messages: | |
if isinstance(message["content"], str): | |
prompt += message["content"] | |
elif isinstance(message["content"], list): | |
# see https://docs.litellm.ai/docs/providers/openai#openai-vision-models | |
for element in message["content"]: | |
if isinstance(element, dict): | |
if element["type"] == "text": | |
prompt += element["text"] | |
elif element["type"] == "image_url": | |
image_url = element["image_url"]["url"] | |
images.append(image_url) | |
return {"prompt": prompt, "images": images} | |
else: | |
prompt = "".join( | |
m["content"] | |
if isinstance(m["content"], str) is str | |
else "".join(m["content"]) | |
for m in messages | |
) | |
return prompt | |
def mistral_instruct_pt(messages): | |
prompt = custom_prompt( | |
initial_prompt_value="<s>", | |
role_dict={ | |
"system": {"pre_message": "[INST]", "post_message": "[/INST]"}, | |
"user": {"pre_message": "[INST]", "post_message": "[/INST]"}, | |
"assistant": {"pre_message": "[INST]", "post_message": "[/INST]"}, | |
}, | |
final_prompt_value="</s>", | |
messages=messages, | |
) | |
return prompt | |
# Falcon prompt template - from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py#L110 | |
def falcon_instruct_pt(messages): | |
prompt = "" | |
for message in messages: | |
if message["role"] == "system": | |
prompt += message["content"] | |
else: | |
prompt += ( | |
message["role"] | |
+ ":" | |
+ message["content"].replace("\r\n", "\n").replace("\n\n", "\n") | |
) | |
prompt += "\n\n" | |
return prompt | |
def falcon_chat_pt(messages): | |
prompt = "" | |
for message in messages: | |
if message["role"] == "system": | |
prompt += "System: " + message["content"] | |
elif message["role"] == "assistant": | |
prompt += "Falcon: " + message["content"] | |
elif message["role"] == "user": | |
prompt += "User: " + message["content"] | |
return prompt | |
# MPT prompt template - from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py#L110 | |
def mpt_chat_pt(messages): | |
prompt = "" | |
for message in messages: | |
if message["role"] == "system": | |
prompt += "<|im_start|>system" + message["content"] + "<|im_end|>" + "\n" | |
elif message["role"] == "assistant": | |
prompt += "<|im_start|>assistant" + message["content"] + "<|im_end|>" + "\n" | |
elif message["role"] == "user": | |
prompt += "<|im_start|>user" + message["content"] + "<|im_end|>" + "\n" | |
return prompt | |
# WizardCoder prompt template - https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0#prompt-format | |
def wizardcoder_pt(messages): | |
prompt = "" | |
for message in messages: | |
if message["role"] == "system": | |
prompt += message["content"] + "\n\n" | |
elif message["role"] == "user": # map to 'Instruction' | |
prompt += "### Instruction:\n" + message["content"] + "\n\n" | |
elif message["role"] == "assistant": # map to 'Response' | |
prompt += "### Response:\n" + message["content"] + "\n\n" | |
return prompt | |
# Phind-CodeLlama prompt template - https://huggingface.co/Phind/Phind-CodeLlama-34B-v2#how-to-prompt-the-model | |
def phind_codellama_pt(messages): | |
prompt = "" | |
for message in messages: | |
if message["role"] == "system": | |
prompt += "### System Prompt\n" + message["content"] + "\n\n" | |
elif message["role"] == "user": | |
prompt += "### User Message\n" + message["content"] + "\n\n" | |
elif message["role"] == "assistant": | |
prompt += "### Assistant\n" + message["content"] + "\n\n" | |
return prompt | |
def hf_chat_template(model: str, messages: list, chat_template: Optional[Any] = None): | |
## get the tokenizer config from huggingface | |
bos_token = "" | |
eos_token = "" | |
if chat_template is None: | |
def _get_tokenizer_config(hf_model_name): | |
url = ( | |
f"https://huggingface.co/{hf_model_name}/raw/main/tokenizer_config.json" | |
) | |
# Make a GET request to fetch the JSON data | |
response = requests.get(url) | |
if response.status_code == 200: | |
# Parse the JSON data | |
tokenizer_config = json.loads(response.content) | |
return {"status": "success", "tokenizer": tokenizer_config} | |
else: | |
return {"status": "failure"} | |
tokenizer_config = _get_tokenizer_config(model) | |
if ( | |
tokenizer_config["status"] == "failure" | |
or "chat_template" not in tokenizer_config["tokenizer"] | |
): | |
raise Exception("No chat template found") | |
## read the bos token, eos token and chat template from the json | |
tokenizer_config = tokenizer_config["tokenizer"] | |
bos_token = tokenizer_config["bos_token"] | |
eos_token = tokenizer_config["eos_token"] | |
chat_template = tokenizer_config["chat_template"] | |
def raise_exception(message): | |
raise Exception(f"Error message - {message}") | |
# Create a template object from the template text | |
env = Environment() | |
env.globals["raise_exception"] = raise_exception | |
try: | |
template = env.from_string(chat_template) | |
except Exception as e: | |
raise e | |
def _is_system_in_template(): | |
try: | |
# Try rendering the template with a system message | |
response = template.render( | |
messages=[{"role": "system", "content": "test"}], | |
eos_token="<eos>", | |
bos_token="<bos>", | |
) | |
return True | |
# This will be raised if Jinja attempts to render the system message and it can't | |
except: | |
return False | |
try: | |
# Render the template with the provided values | |
if _is_system_in_template(): | |
rendered_text = template.render( | |
bos_token=bos_token, eos_token=eos_token, messages=messages | |
) | |
else: | |
# treat a system message as a user message, if system not in template | |
try: | |
reformatted_messages = [] | |
for message in messages: | |
if message["role"] == "system": | |
reformatted_messages.append( | |
{"role": "user", "content": message["content"]} | |
) | |
else: | |
reformatted_messages.append(message) | |
rendered_text = template.render( | |
bos_token=bos_token, | |
eos_token=eos_token, | |
messages=reformatted_messages, | |
) | |
except Exception as e: | |
if "Conversation roles must alternate user/assistant" in str(e): | |
# reformat messages to ensure user/assistant are alternating, if there's either 2 consecutive 'user' messages or 2 consecutive 'assistant' message, add a blank 'user' or 'assistant' message to ensure compatibility | |
new_messages = [] | |
for i in range(len(reformatted_messages) - 1): | |
new_messages.append(reformatted_messages[i]) | |
if ( | |
reformatted_messages[i]["role"] | |
== reformatted_messages[i + 1]["role"] | |
): | |
if reformatted_messages[i]["role"] == "user": | |
new_messages.append( | |
{"role": "assistant", "content": ""} | |
) | |
else: | |
new_messages.append({"role": "user", "content": ""}) | |
new_messages.append(reformatted_messages[-1]) | |
rendered_text = template.render( | |
bos_token=bos_token, eos_token=eos_token, messages=new_messages | |
) | |
return rendered_text | |
except Exception as e: | |
raise Exception(f"Error rendering template - {str(e)}") | |
# Anthropic template | |
def claude_2_1_pt( | |
messages: list, | |
): # format - https://docs.anthropic.com/claude/docs/how-to-use-system-prompts | |
""" | |
Claude v2.1 allows system prompts (no Human: needed), but requires it be followed by Human: | |
- you can't just pass a system message | |
- you can't pass a system message and follow that with an assistant message | |
if system message is passed in, you can only do system, human, assistant or system, human | |
if a system message is passed in and followed by an assistant message, insert a blank human message between them. | |
Additionally, you can "put words in Claude's mouth" by ending with an assistant message. | |
See: https://docs.anthropic.com/claude/docs/put-words-in-claudes-mouth | |
""" | |
class AnthropicConstants(Enum): | |
HUMAN_PROMPT = "\n\nHuman: " | |
AI_PROMPT = "\n\nAssistant: " | |
prompt = "" | |
for idx, message in enumerate(messages): | |
if message["role"] == "user": | |
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}" | |
elif message["role"] == "system": | |
prompt += f"{message['content']}" | |
elif message["role"] == "assistant": | |
if idx > 0 and messages[idx - 1]["role"] == "system": | |
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}" # Insert a blank human message | |
prompt += f"{AnthropicConstants.AI_PROMPT.value}{message['content']}" | |
if messages[-1]["role"] != "assistant": | |
prompt += f"{AnthropicConstants.AI_PROMPT.value}" # prompt must end with \"\n\nAssistant: " turn | |
return prompt | |
### TOGETHER AI | |
def get_model_info(token, model): | |
try: | |
headers = {"Authorization": f"Bearer {token}"} | |
response = requests.get("https://api.together.xyz/models/info", headers=headers) | |
if response.status_code == 200: | |
model_info = response.json() | |
for m in model_info: | |
if m["name"].lower().strip() == model.strip(): | |
return m["config"].get("prompt_format", None), m["config"].get( | |
"chat_template", None | |
) | |
return None, None | |
else: | |
return None, None | |
except Exception as e: # safely fail a prompt template request | |
return None, None | |
def format_prompt_togetherai(messages, prompt_format, chat_template): | |
if prompt_format is None: | |
return default_pt(messages) | |
human_prompt, assistant_prompt = prompt_format.split("{prompt}") | |
if chat_template is not None: | |
prompt = hf_chat_template( | |
model=None, messages=messages, chat_template=chat_template | |
) | |
elif prompt_format is not None: | |
prompt = custom_prompt( | |
role_dict={}, | |
messages=messages, | |
initial_prompt_value=human_prompt, | |
final_prompt_value=assistant_prompt, | |
) | |
else: | |
prompt = default_pt(messages) | |
return prompt | |
### | |
def anthropic_pt( | |
messages: list, | |
): # format - https://docs.anthropic.com/claude/reference/complete_post | |
""" | |
You can "put words in Claude's mouth" by ending with an assistant message. | |
See: https://docs.anthropic.com/claude/docs/put-words-in-claudes-mouth | |
""" | |
class AnthropicConstants(Enum): | |
HUMAN_PROMPT = "\n\nHuman: " | |
AI_PROMPT = "\n\nAssistant: " | |
prompt = "" | |
for idx, message in enumerate( | |
messages | |
): # needs to start with `\n\nHuman: ` and end with `\n\nAssistant: ` | |
if message["role"] == "user": | |
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}" | |
elif message["role"] == "system": | |
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}<admin>{message['content']}</admin>" | |
else: | |
prompt += f"{AnthropicConstants.AI_PROMPT.value}{message['content']}" | |
if ( | |
idx == 0 and message["role"] == "assistant" | |
): # ensure the prompt always starts with `\n\nHuman: ` | |
prompt = f"{AnthropicConstants.HUMAN_PROMPT.value}" + prompt | |
if messages[-1]["role"] != "assistant": | |
prompt += f"{AnthropicConstants.AI_PROMPT.value}" | |
return prompt | |
def _load_image_from_url(image_url): | |
try: | |
from PIL import Image | |
except: | |
raise Exception("gemini image conversion failed please run `pip install Pillow`") | |
from io import BytesIO | |
try: | |
# Send a GET request to the image URL | |
response = requests.get(image_url) | |
response.raise_for_status() # Raise an exception for HTTP errors | |
# Check the response's content type to ensure it is an image | |
content_type = response.headers.get('content-type') | |
if not content_type or 'image' not in content_type: | |
raise ValueError(f"URL does not point to a valid image (content-type: {content_type})") | |
# Load the image from the response content | |
return Image.open(BytesIO(response.content)) | |
except requests.RequestException as e: | |
print(f"Request failed: {e}") | |
except UnidentifiedImageError: | |
print("Cannot identify image file (it may not be a supported image format or might be corrupted).") | |
except ValueError as e: | |
print(e) | |
def _gemini_vision_convert_messages(messages: list): | |
""" | |
Converts given messages for GPT-4 Vision to Gemini format. | |
Args: | |
messages (list): The messages to convert. Each message can be a dictionary with a "content" key. The content can be a string or a list of elements. If it is a string, it will be concatenated to the prompt. If it is a list, each element will be processed based on its type: | |
- If the element is a dictionary with a "type" key equal to "text", its "text" value will be concatenated to the prompt. | |
- If the element is a dictionary with a "type" key equal to "image_url", its "image_url" value will be added to the list of images. | |
Returns: | |
tuple: A tuple containing the prompt (a string) and the processed images (a list of objects representing the images). | |
""" | |
try: | |
from PIL import Image | |
except: | |
raise Exception("gemini image conversion failed please run `pip install Pillow`") | |
try: | |
# given messages for gpt-4 vision, convert them for gemini | |
# https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/getting-started/intro_gemini_python.ipynb | |
prompt = "" | |
images = [] | |
for message in messages: | |
if isinstance(message["content"], str): | |
prompt += message["content"] | |
elif isinstance(message["content"], list): | |
# see https://docs.litellm.ai/docs/providers/openai#openai-vision-models | |
for element in message["content"]: | |
if isinstance(element, dict): | |
if element["type"] == "text": | |
prompt += element["text"] | |
elif element["type"] == "image_url": | |
image_url = element["image_url"]["url"] | |
images.append(image_url) | |
# processing images passed to gemini | |
processed_images = [] | |
for img in images: | |
if "https:/" in img: | |
# Case 1: Image from URL | |
image = _load_image_from_url(img) | |
processed_images.append(image) | |
else: | |
# Case 2: Image filepath (e.g. temp.jpeg) given | |
image = Image.open(img) | |
processed_images.append(image) | |
content = [prompt] + processed_images | |
return content | |
except Exception as e: | |
raise e | |
def gemini_text_image_pt(messages: list): | |
""" | |
{ | |
"contents":[ | |
{ | |
"parts":[ | |
{"text": "What is this picture?"}, | |
{ | |
"inline_data": { | |
"mime_type":"image/jpeg", | |
"data": "'$(base64 -w0 image.jpg)'" | |
} | |
} | |
] | |
} | |
] | |
} | |
""" | |
try: | |
import google.generativeai as genai | |
except: | |
raise Exception( | |
"Importing google.generativeai failed, please run 'pip install -q google-generativeai" | |
) | |
prompt = "" | |
images = [] | |
for message in messages: | |
if isinstance(message["content"], str): | |
prompt += message["content"] | |
elif isinstance(message["content"], list): | |
# see https://docs.litellm.ai/docs/providers/openai#openai-vision-models | |
for element in message["content"]: | |
if isinstance(element, dict): | |
if element["type"] == "text": | |
prompt += element["text"] | |
elif element["type"] == "image_url": | |
image_url = element["image_url"]["url"] | |
images.append(image_url) | |
content = [prompt] + images | |
return content | |
# Function call template | |
def function_call_prompt(messages: list, functions: list): | |
function_prompt = ( | |
"Produce JSON OUTPUT ONLY! The following functions are available to you:" | |
) | |
for function in functions: | |
function_prompt += f"""\n{function}\n""" | |
function_added_to_prompt = False | |
for message in messages: | |
if "system" in message["role"]: | |
message["content"] += f"""{function_prompt}""" | |
function_added_to_prompt = True | |
if function_added_to_prompt == False: | |
messages.append({"role": "system", "content": f"""{function_prompt}"""}) | |
return messages | |
# Custom prompt template | |
def custom_prompt( | |
role_dict: dict, | |
messages: list, | |
initial_prompt_value: str = "", | |
final_prompt_value: str = "", | |
bos_token: str = "", | |
eos_token: str = "", | |
): | |
prompt = bos_token + initial_prompt_value | |
bos_open = True | |
## a bos token is at the start of a system / human message | |
## an eos token is at the end of the assistant response to the message | |
for message in messages: | |
role = message["role"] | |
if role in ["system", "human"] and not bos_open: | |
prompt += bos_token | |
bos_open = True | |
pre_message_str = ( | |
role_dict[role]["pre_message"] | |
if role in role_dict and "pre_message" in role_dict[role] | |
else "" | |
) | |
post_message_str = ( | |
role_dict[role]["post_message"] | |
if role in role_dict and "post_message" in role_dict[role] | |
else "" | |
) | |
prompt += pre_message_str + message["content"] + post_message_str | |
if role == "assistant": | |
prompt += eos_token | |
bos_open = False | |
prompt += final_prompt_value | |
return prompt | |
def prompt_factory( | |
model: str, | |
messages: list, | |
custom_llm_provider: Optional[str] = None, | |
api_key: Optional[str] = None, | |
): | |
original_model_name = model | |
model = model.lower() | |
if custom_llm_provider == "ollama": | |
return ollama_pt(model=model, messages=messages) | |
elif custom_llm_provider == "anthropic": | |
if any(_ in model for _ in ["claude-2.1","claude-v2:1"]): | |
return claude_2_1_pt(messages=messages) | |
else: | |
return anthropic_pt(messages=messages) | |
elif custom_llm_provider == "together_ai": | |
prompt_format, chat_template = get_model_info(token=api_key, model=model) | |
return format_prompt_togetherai( | |
messages=messages, prompt_format=prompt_format, chat_template=chat_template | |
) | |
elif custom_llm_provider == "gemini": | |
if model == "gemini-pro-vision": | |
return _gemini_vision_convert_messages(messages=messages) | |
else: | |
return gemini_text_image_pt(messages=messages) | |
try: | |
if "meta-llama/llama-2" in model and "chat" in model: | |
return llama_2_chat_pt(messages=messages) | |
elif ( | |
"tiiuae/falcon" in model | |
): # Note: for the instruct models, it's best to use a User: .., Assistant:.. approach in your prompt template. | |
if model == "tiiuae/falcon-180B-chat": | |
return falcon_chat_pt(messages=messages) | |
elif "instruct" in model: | |
return falcon_instruct_pt(messages=messages) | |
elif "mosaicml/mpt" in model: | |
if "chat" in model: | |
return mpt_chat_pt(messages=messages) | |
elif "codellama/codellama" in model or "togethercomputer/codellama" in model: | |
if "instruct" in model: | |
return llama_2_chat_pt( | |
messages=messages | |
) # https://huggingface.co/blog/codellama#conversational-instructions | |
elif "wizardlm/wizardcoder" in model: | |
return wizardcoder_pt(messages=messages) | |
elif "phind/phind-codellama" in model: | |
return phind_codellama_pt(messages=messages) | |
elif "togethercomputer/llama-2" in model and ( | |
"instruct" in model or "chat" in model | |
): | |
return llama_2_chat_pt(messages=messages) | |
elif model in [ | |
"gryphe/mythomax-l2-13b", | |
"gryphe/mythomix-l2-13b", | |
"gryphe/mythologic-l2-13b", | |
]: | |
return alpaca_pt(messages=messages) | |
else: | |
return hf_chat_template(original_model_name, messages) | |
except Exception as e: | |
return default_pt( | |
messages=messages | |
) # default that covers Bloom, T-5, any non-chat tuned model (e.g. base Llama2) | |