Spaces:
Running
Running
from typing import Optional, Union, Any | |
import types, requests | |
from .base import BaseLLM | |
from litellm.utils import ( | |
ModelResponse, | |
Choices, | |
Message, | |
CustomStreamWrapper, | |
convert_to_model_response_object, | |
) | |
from typing import Callable, Optional | |
from litellm import OpenAIConfig | |
import litellm, json | |
import httpx | |
from .custom_httpx.azure_dall_e_2 import CustomHTTPTransport, AsyncCustomHTTPTransport | |
from openai import AzureOpenAI, AsyncAzureOpenAI | |
class AzureOpenAIError(Exception): | |
def __init__( | |
self, | |
status_code, | |
message, | |
request: Optional[httpx.Request] = None, | |
response: Optional[httpx.Response] = None, | |
): | |
self.status_code = status_code | |
self.message = message | |
if request: | |
self.request = request | |
else: | |
self.request = httpx.Request(method="POST", url="https://api.openai.com/v1") | |
if response: | |
self.response = response | |
else: | |
self.response = httpx.Response( | |
status_code=status_code, request=self.request | |
) | |
super().__init__( | |
self.message | |
) # Call the base class constructor with the parameters it needs | |
class AzureOpenAIConfig(OpenAIConfig): | |
""" | |
Reference: https://platform.openai.com/docs/api-reference/chat/create | |
The class `AzureOpenAIConfig` provides configuration for the OpenAI's Chat API interface, for use with Azure. It inherits from `OpenAIConfig`. Below are the parameters:: | |
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition. | |
- `function_call` (string or object): This optional parameter controls how the model calls functions. | |
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs. | |
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion. | |
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion. | |
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message. | |
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics. | |
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens. | |
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2. | |
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling. | |
""" | |
def __init__( | |
self, | |
frequency_penalty: Optional[int] = None, | |
function_call: Optional[Union[str, dict]] = None, | |
functions: Optional[list] = None, | |
logit_bias: Optional[dict] = None, | |
max_tokens: Optional[int] = None, | |
n: Optional[int] = None, | |
presence_penalty: Optional[int] = None, | |
stop: Optional[Union[str, list]] = None, | |
temperature: Optional[int] = None, | |
top_p: Optional[int] = None, | |
) -> None: | |
super().__init__( | |
frequency_penalty, | |
function_call, | |
functions, | |
logit_bias, | |
max_tokens, | |
n, | |
presence_penalty, | |
stop, | |
temperature, | |
top_p, | |
) | |
class AzureChatCompletion(BaseLLM): | |
def __init__(self) -> None: | |
super().__init__() | |
def validate_environment(self, api_key, azure_ad_token): | |
headers = { | |
"content-type": "application/json", | |
} | |
if api_key is not None: | |
headers["api-key"] = api_key | |
elif azure_ad_token is not None: | |
headers["Authorization"] = f"Bearer {azure_ad_token}" | |
return headers | |
def completion( | |
self, | |
model: str, | |
messages: list, | |
model_response: ModelResponse, | |
api_key: str, | |
api_base: str, | |
api_version: str, | |
api_type: str, | |
azure_ad_token: str, | |
print_verbose: Callable, | |
timeout, | |
logging_obj, | |
optional_params, | |
litellm_params, | |
logger_fn, | |
acompletion: bool = False, | |
headers: Optional[dict] = None, | |
client=None, | |
): | |
super().completion() | |
exception_mapping_worked = False | |
try: | |
if model is None or messages is None: | |
raise AzureOpenAIError( | |
status_code=422, message=f"Missing model or messages" | |
) | |
max_retries = optional_params.pop("max_retries", 2) | |
### CHECK IF CLOUDFLARE AI GATEWAY ### | |
### if so - set the model as part of the base url | |
if "gateway.ai.cloudflare.com" in api_base: | |
## build base url - assume api base includes resource name | |
if client is None: | |
if not api_base.endswith("/"): | |
api_base += "/" | |
api_base += f"{model}" | |
azure_client_params = { | |
"api_version": api_version, | |
"base_url": f"{api_base}", | |
"http_client": litellm.client_session, | |
"max_retries": max_retries, | |
"timeout": timeout, | |
} | |
if api_key is not None: | |
azure_client_params["api_key"] = api_key | |
elif azure_ad_token is not None: | |
azure_client_params["azure_ad_token"] = azure_ad_token | |
if acompletion is True: | |
client = AsyncAzureOpenAI(**azure_client_params) | |
else: | |
client = AzureOpenAI(**azure_client_params) | |
data = {"model": None, "messages": messages, **optional_params} | |
else: | |
data = { | |
"model": model, # type: ignore | |
"messages": messages, | |
**optional_params, | |
} | |
if acompletion is True: | |
if optional_params.get("stream", False): | |
return self.async_streaming( | |
logging_obj=logging_obj, | |
api_base=api_base, | |
data=data, | |
model=model, | |
api_key=api_key, | |
api_version=api_version, | |
azure_ad_token=azure_ad_token, | |
timeout=timeout, | |
client=client, | |
) | |
else: | |
return self.acompletion( | |
api_base=api_base, | |
data=data, | |
model_response=model_response, | |
api_key=api_key, | |
api_version=api_version, | |
model=model, | |
azure_ad_token=azure_ad_token, | |
timeout=timeout, | |
client=client, | |
logging_obj=logging_obj, | |
) | |
elif "stream" in optional_params and optional_params["stream"] == True: | |
return self.streaming( | |
logging_obj=logging_obj, | |
api_base=api_base, | |
data=data, | |
model=model, | |
api_key=api_key, | |
api_version=api_version, | |
azure_ad_token=azure_ad_token, | |
timeout=timeout, | |
client=client, | |
) | |
else: | |
## LOGGING | |
logging_obj.pre_call( | |
input=messages, | |
api_key=api_key, | |
additional_args={ | |
"headers": { | |
"api_key": api_key, | |
"azure_ad_token": azure_ad_token, | |
}, | |
"api_version": api_version, | |
"api_base": api_base, | |
"complete_input_dict": data, | |
}, | |
) | |
if not isinstance(max_retries, int): | |
raise AzureOpenAIError( | |
status_code=422, message="max retries must be an int" | |
) | |
# init AzureOpenAI Client | |
azure_client_params = { | |
"api_version": api_version, | |
"azure_endpoint": api_base, | |
"azure_deployment": model, | |
"http_client": litellm.client_session, | |
"max_retries": max_retries, | |
"timeout": timeout, | |
} | |
if api_key is not None: | |
azure_client_params["api_key"] = api_key | |
elif azure_ad_token is not None: | |
azure_client_params["azure_ad_token"] = azure_ad_token | |
if client is None: | |
azure_client = AzureOpenAI(**azure_client_params) | |
else: | |
azure_client = client | |
response = azure_client.chat.completions.create(**data, timeout=timeout) # type: ignore | |
stringified_response = response.model_dump() | |
## LOGGING | |
logging_obj.post_call( | |
input=messages, | |
api_key=api_key, | |
original_response=stringified_response, | |
additional_args={ | |
"headers": headers, | |
"api_version": api_version, | |
"api_base": api_base, | |
}, | |
) | |
return convert_to_model_response_object( | |
response_object=stringified_response, | |
model_response_object=model_response, | |
) | |
except AzureOpenAIError as e: | |
exception_mapping_worked = True | |
raise e | |
except Exception as e: | |
if hasattr(e, "status_code"): | |
raise AzureOpenAIError(status_code=e.status_code, message=str(e)) | |
else: | |
raise AzureOpenAIError(status_code=500, message=str(e)) | |
async def acompletion( | |
self, | |
api_key: str, | |
api_version: str, | |
model: str, | |
api_base: str, | |
data: dict, | |
timeout: Any, | |
model_response: ModelResponse, | |
azure_ad_token: Optional[str] = None, | |
client=None, # this is the AsyncAzureOpenAI | |
logging_obj=None, | |
): | |
response = None | |
try: | |
max_retries = data.pop("max_retries", 2) | |
if not isinstance(max_retries, int): | |
raise AzureOpenAIError( | |
status_code=422, message="max retries must be an int" | |
) | |
# init AzureOpenAI Client | |
azure_client_params = { | |
"api_version": api_version, | |
"azure_endpoint": api_base, | |
"azure_deployment": model, | |
"http_client": litellm.client_session, | |
"max_retries": max_retries, | |
"timeout": timeout, | |
} | |
if api_key is not None: | |
azure_client_params["api_key"] = api_key | |
elif azure_ad_token is not None: | |
azure_client_params["azure_ad_token"] = azure_ad_token | |
if client is None: | |
azure_client = AsyncAzureOpenAI(**azure_client_params) | |
else: | |
azure_client = client | |
## LOGGING | |
logging_obj.pre_call( | |
input=data["messages"], | |
api_key=azure_client.api_key, | |
additional_args={ | |
"headers": {"Authorization": f"Bearer {azure_client.api_key}"}, | |
"api_base": azure_client._base_url._uri_reference, | |
"acompletion": True, | |
"complete_input_dict": data, | |
}, | |
) | |
response = await azure_client.chat.completions.create( | |
**data, timeout=timeout | |
) | |
return convert_to_model_response_object( | |
response_object=response.model_dump(), | |
model_response_object=model_response, | |
) | |
except AzureOpenAIError as e: | |
exception_mapping_worked = True | |
raise e | |
except Exception as e: | |
if hasattr(e, "status_code"): | |
raise e | |
else: | |
raise AzureOpenAIError(status_code=500, message=str(e)) | |
def streaming( | |
self, | |
logging_obj, | |
api_base: str, | |
api_key: str, | |
api_version: str, | |
data: dict, | |
model: str, | |
timeout: Any, | |
azure_ad_token: Optional[str] = None, | |
client=None, | |
): | |
max_retries = data.pop("max_retries", 2) | |
if not isinstance(max_retries, int): | |
raise AzureOpenAIError( | |
status_code=422, message="max retries must be an int" | |
) | |
# init AzureOpenAI Client | |
azure_client_params = { | |
"api_version": api_version, | |
"azure_endpoint": api_base, | |
"azure_deployment": model, | |
"http_client": litellm.client_session, | |
"max_retries": max_retries, | |
"timeout": timeout, | |
} | |
if api_key is not None: | |
azure_client_params["api_key"] = api_key | |
elif azure_ad_token is not None: | |
azure_client_params["azure_ad_token"] = azure_ad_token | |
if client is None: | |
azure_client = AzureOpenAI(**azure_client_params) | |
else: | |
azure_client = client | |
## LOGGING | |
logging_obj.pre_call( | |
input=data["messages"], | |
api_key=azure_client.api_key, | |
additional_args={ | |
"headers": {"Authorization": f"Bearer {azure_client.api_key}"}, | |
"api_base": azure_client._base_url._uri_reference, | |
"acompletion": True, | |
"complete_input_dict": data, | |
}, | |
) | |
response = azure_client.chat.completions.create(**data, timeout=timeout) | |
streamwrapper = CustomStreamWrapper( | |
completion_stream=response, | |
model=model, | |
custom_llm_provider="azure", | |
logging_obj=logging_obj, | |
) | |
return streamwrapper | |
async def async_streaming( | |
self, | |
logging_obj, | |
api_base: str, | |
api_key: str, | |
api_version: str, | |
data: dict, | |
model: str, | |
timeout: Any, | |
azure_ad_token: Optional[str] = None, | |
client=None, | |
): | |
try: | |
# init AzureOpenAI Client | |
azure_client_params = { | |
"api_version": api_version, | |
"azure_endpoint": api_base, | |
"azure_deployment": model, | |
"http_client": litellm.client_session, | |
"max_retries": data.pop("max_retries", 2), | |
"timeout": timeout, | |
} | |
if api_key is not None: | |
azure_client_params["api_key"] = api_key | |
elif azure_ad_token is not None: | |
azure_client_params["azure_ad_token"] = azure_ad_token | |
if client is None: | |
azure_client = AsyncAzureOpenAI(**azure_client_params) | |
else: | |
azure_client = client | |
## LOGGING | |
logging_obj.pre_call( | |
input=data["messages"], | |
api_key=azure_client.api_key, | |
additional_args={ | |
"headers": {"Authorization": f"Bearer {azure_client.api_key}"}, | |
"api_base": azure_client._base_url._uri_reference, | |
"acompletion": True, | |
"complete_input_dict": data, | |
}, | |
) | |
response = await azure_client.chat.completions.create( | |
**data, timeout=timeout | |
) | |
# return response | |
streamwrapper = CustomStreamWrapper( | |
completion_stream=response, | |
model=model, | |
custom_llm_provider="azure", | |
logging_obj=logging_obj, | |
) | |
return streamwrapper ## DO NOT make this into an async for ... loop, it will yield an async generator, which won't raise errors if the response fails | |
except Exception as e: | |
if hasattr(e, "status_code"): | |
raise AzureOpenAIError(status_code=e.status_code, message=str(e)) | |
else: | |
raise AzureOpenAIError(status_code=500, message=str(e)) | |
async def aembedding( | |
self, | |
data: dict, | |
model_response: ModelResponse, | |
azure_client_params: dict, | |
api_key: str, | |
input: list, | |
client=None, | |
logging_obj=None, | |
timeout=None, | |
): | |
response = None | |
try: | |
if client is None: | |
openai_aclient = AsyncAzureOpenAI(**azure_client_params) | |
else: | |
openai_aclient = client | |
response = await openai_aclient.embeddings.create(**data, timeout=timeout) | |
stringified_response = response.model_dump() | |
## LOGGING | |
logging_obj.post_call( | |
input=input, | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
original_response=stringified_response, | |
) | |
return convert_to_model_response_object( | |
response_object=stringified_response, | |
model_response_object=model_response, | |
response_type="embedding", | |
) | |
except Exception as e: | |
## LOGGING | |
logging_obj.post_call( | |
input=input, | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
original_response=str(e), | |
) | |
raise e | |
def embedding( | |
self, | |
model: str, | |
input: list, | |
api_key: str, | |
api_base: str, | |
api_version: str, | |
timeout: float, | |
logging_obj=None, | |
model_response=None, | |
optional_params=None, | |
azure_ad_token: Optional[str] = None, | |
client=None, | |
aembedding=None, | |
): | |
super().embedding() | |
exception_mapping_worked = False | |
if self._client_session is None: | |
self._client_session = self.create_client_session() | |
try: | |
data = {"model": model, "input": input, **optional_params} | |
max_retries = data.pop("max_retries", 2) | |
if not isinstance(max_retries, int): | |
raise AzureOpenAIError( | |
status_code=422, message="max retries must be an int" | |
) | |
# init AzureOpenAI Client | |
azure_client_params = { | |
"api_version": api_version, | |
"azure_endpoint": api_base, | |
"azure_deployment": model, | |
"http_client": litellm.client_session, | |
"max_retries": max_retries, | |
"timeout": timeout, | |
} | |
if api_key is not None: | |
azure_client_params["api_key"] = api_key | |
elif azure_ad_token is not None: | |
azure_client_params["azure_ad_token"] = azure_ad_token | |
## LOGGING | |
logging_obj.pre_call( | |
input=input, | |
api_key=api_key, | |
additional_args={ | |
"complete_input_dict": data, | |
"headers": {"api_key": api_key, "azure_ad_token": azure_ad_token}, | |
}, | |
) | |
if aembedding == True: | |
response = self.aembedding( | |
data=data, | |
input=input, | |
logging_obj=logging_obj, | |
api_key=api_key, | |
model_response=model_response, | |
azure_client_params=azure_client_params, | |
timeout=timeout, | |
) | |
return response | |
if client is None: | |
azure_client = AzureOpenAI(**azure_client_params) # type: ignore | |
else: | |
azure_client = client | |
## COMPLETION CALL | |
response = azure_client.embeddings.create(**data, timeout=timeout) # type: ignore | |
## LOGGING | |
logging_obj.post_call( | |
input=input, | |
api_key=api_key, | |
additional_args={"complete_input_dict": data, "api_base": api_base}, | |
original_response=response, | |
) | |
return convert_to_model_response_object(response_object=response.model_dump(), model_response_object=model_response, response_type="embedding") # type: ignore | |
except AzureOpenAIError as e: | |
exception_mapping_worked = True | |
raise e | |
except Exception as e: | |
if hasattr(e, "status_code"): | |
raise AzureOpenAIError(status_code=e.status_code, message=str(e)) | |
else: | |
raise AzureOpenAIError(status_code=500, message=str(e)) | |
async def aimage_generation( | |
self, | |
data: dict, | |
model_response: ModelResponse, | |
azure_client_params: dict, | |
api_key: str, | |
input: list, | |
client=None, | |
logging_obj=None, | |
timeout=None, | |
): | |
response = None | |
try: | |
if client is None: | |
client_session = litellm.aclient_session or httpx.AsyncClient( | |
transport=AsyncCustomHTTPTransport(), | |
) | |
openai_aclient = AsyncAzureOpenAI( | |
http_client=client_session, **azure_client_params | |
) | |
else: | |
openai_aclient = client | |
response = await openai_aclient.images.generate(**data, timeout=timeout) | |
stringified_response = response.model_dump() | |
## LOGGING | |
logging_obj.post_call( | |
input=input, | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
original_response=stringified_response, | |
) | |
return convert_to_model_response_object( | |
response_object=stringified_response, | |
model_response_object=model_response, | |
response_type="image_generation", | |
) | |
except Exception as e: | |
## LOGGING | |
logging_obj.post_call( | |
input=input, | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
original_response=str(e), | |
) | |
raise e | |
def image_generation( | |
self, | |
prompt: str, | |
timeout: float, | |
model: Optional[str] = None, | |
api_key: Optional[str] = None, | |
api_base: Optional[str] = None, | |
api_version: Optional[str] = None, | |
model_response: Optional[litellm.utils.ImageResponse] = None, | |
azure_ad_token: Optional[str] = None, | |
logging_obj=None, | |
optional_params=None, | |
client=None, | |
aimg_generation=None, | |
): | |
exception_mapping_worked = False | |
try: | |
if model and len(model) > 0: | |
model = model | |
else: | |
model = None | |
data = {"model": model, "prompt": prompt, **optional_params} | |
max_retries = data.pop("max_retries", 2) | |
if not isinstance(max_retries, int): | |
raise AzureOpenAIError( | |
status_code=422, message="max retries must be an int" | |
) | |
# init AzureOpenAI Client | |
azure_client_params = { | |
"api_version": api_version, | |
"azure_endpoint": api_base, | |
"azure_deployment": model, | |
"max_retries": max_retries, | |
"timeout": timeout, | |
} | |
if api_key is not None: | |
azure_client_params["api_key"] = api_key | |
elif azure_ad_token is not None: | |
azure_client_params["azure_ad_token"] = azure_ad_token | |
if aimg_generation == True: | |
response = self.aimage_generation(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_key=api_key, client=client, azure_client_params=azure_client_params, timeout=timeout) # type: ignore | |
return response | |
if client is None: | |
client_session = litellm.client_session or httpx.Client( | |
transport=CustomHTTPTransport(), | |
) | |
azure_client = AzureOpenAI(http_client=client_session, **azure_client_params) # type: ignore | |
else: | |
azure_client = client | |
## LOGGING | |
logging_obj.pre_call( | |
input=prompt, | |
api_key=azure_client.api_key, | |
additional_args={ | |
"headers": {"Authorization": f"Bearer {azure_client.api_key}"}, | |
"api_base": azure_client._base_url._uri_reference, | |
"acompletion": False, | |
"complete_input_dict": data, | |
}, | |
) | |
## COMPLETION CALL | |
response = azure_client.images.generate(**data, timeout=timeout) # type: ignore | |
## LOGGING | |
logging_obj.post_call( | |
input=input, | |
api_key=api_key, | |
additional_args={"complete_input_dict": data}, | |
original_response=response, | |
) | |
# return response | |
return convert_to_model_response_object(response_object=response.model_dump(), model_response_object=model_response, response_type="image_generation") # type: ignore | |
except AzureOpenAIError as e: | |
exception_mapping_worked = True | |
raise e | |
except Exception as e: | |
if hasattr(e, "status_code"): | |
raise AzureOpenAIError(status_code=e.status_code, message=str(e)) | |
else: | |
raise AzureOpenAIError(status_code=500, message=str(e)) | |
async def ahealth_check( | |
self, | |
model: Optional[str], | |
api_key: str, | |
api_base: str, | |
api_version: str, | |
timeout: float, | |
mode: str, | |
messages: Optional[list] = None, | |
input: Optional[list] = None, | |
prompt: Optional[str] = None, | |
): | |
client_session = litellm.aclient_session or httpx.AsyncClient( | |
transport=AsyncCustomHTTPTransport(), # handle dall-e-2 calls | |
) | |
if "gateway.ai.cloudflare.com" in api_base: | |
## build base url - assume api base includes resource name | |
if not api_base.endswith("/"): | |
api_base += "/" | |
api_base += f"{model}" | |
client = AsyncAzureOpenAI( | |
base_url=api_base, | |
api_version=api_version, | |
api_key=api_key, | |
timeout=timeout, | |
http_client=client_session, | |
) | |
model = None | |
# cloudflare ai gateway, needs model=None | |
else: | |
client = AsyncAzureOpenAI( | |
api_version=api_version, | |
azure_endpoint=api_base, | |
api_key=api_key, | |
timeout=timeout, | |
http_client=client_session, | |
) | |
# only run this check if it's not cloudflare ai gateway | |
if model is None and mode != "image_generation": | |
raise Exception("model is not set") | |
completion = None | |
if mode == "completion": | |
completion = await client.completions.with_raw_response.create( | |
model=model, # type: ignore | |
prompt=prompt, # type: ignore | |
) | |
elif mode == "chat": | |
if messages is None: | |
raise Exception("messages is not set") | |
completion = await client.chat.completions.with_raw_response.create( | |
model=model, # type: ignore | |
messages=messages, # type: ignore | |
) | |
elif mode == "embedding": | |
if input is None: | |
raise Exception("input is not set") | |
completion = await client.embeddings.with_raw_response.create( | |
model=model, # type: ignore | |
input=input, # type: ignore | |
) | |
elif mode == "image_generation": | |
if prompt is None: | |
raise Exception("prompt is not set") | |
completion = await client.images.with_raw_response.generate( | |
model=model, # type: ignore | |
prompt=prompt, # type: ignore | |
) | |
else: | |
raise Exception("mode not set") | |
response = {} | |
if completion is None or not hasattr(completion, "headers"): | |
raise Exception("invalid completion response") | |
if ( | |
completion.headers.get("x-ratelimit-remaining-requests", None) is not None | |
): # not provided for dall-e requests | |
response["x-ratelimit-remaining-requests"] = completion.headers[ | |
"x-ratelimit-remaining-requests" | |
] | |
if completion.headers.get("x-ratelimit-remaining-tokens", None) is not None: | |
response["x-ratelimit-remaining-tokens"] = completion.headers[ | |
"x-ratelimit-remaining-tokens" | |
] | |
return response | |