Spaces:
Running
Running
import os, types | |
import json | |
from enum import Enum | |
import requests | |
import time | |
from typing import Callable, Optional | |
from litellm.utils import ModelResponse, Usage | |
import litellm | |
from .prompt_templates.factory import prompt_factory, custom_prompt | |
import httpx | |
class AnthropicConstants(Enum): | |
HUMAN_PROMPT = "\n\nHuman: " | |
AI_PROMPT = "\n\nAssistant: " | |
class AnthropicError(Exception): | |
def __init__(self, status_code, message): | |
self.status_code = status_code | |
self.message = message | |
self.request = httpx.Request( | |
method="POST", url="https://api.anthropic.com/v1/complete" | |
) | |
self.response = httpx.Response(status_code=status_code, request=self.request) | |
super().__init__( | |
self.message | |
) # Call the base class constructor with the parameters it needs | |
class AnthropicConfig: | |
""" | |
Reference: https://docs.anthropic.com/claude/reference/complete_post | |
to pass metadata to anthropic, it's {"user_id": "any-relevant-information"} | |
""" | |
max_tokens_to_sample: Optional[ | |
int | |
] = litellm.max_tokens # anthropic requires a default | |
stop_sequences: Optional[list] = None | |
temperature: Optional[int] = None | |
top_p: Optional[int] = None | |
top_k: Optional[int] = None | |
metadata: Optional[dict] = None | |
def __init__( | |
self, | |
max_tokens_to_sample: Optional[int] = 256, # anthropic requires a default | |
stop_sequences: Optional[list] = None, | |
temperature: Optional[int] = None, | |
top_p: Optional[int] = None, | |
top_k: Optional[int] = None, | |
metadata: Optional[dict] = None, | |
) -> None: | |
locals_ = locals() | |
for key, value in locals_.items(): | |
if key != "self" and value is not None: | |
setattr(self.__class__, key, value) | |
def get_config(cls): | |
return { | |
k: v | |
for k, v in cls.__dict__.items() | |
if not k.startswith("__") | |
and not isinstance( | |
v, | |
( | |
types.FunctionType, | |
types.BuiltinFunctionType, | |
classmethod, | |
staticmethod, | |
), | |
) | |
and v is not None | |
} | |
# makes headers for API call | |
def validate_environment(api_key): | |
if api_key is None: | |
raise ValueError( | |
"Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params" | |
) | |
headers = { | |
"accept": "application/json", | |
"anthropic-version": "2023-06-01", | |
"content-type": "application/json", | |
"x-api-key": api_key, | |
} | |
return headers | |
def completion( | |
model: str, | |
messages: list, | |
api_base: str, | |
custom_prompt_dict: dict, | |
model_response: ModelResponse, | |
print_verbose: Callable, | |
encoding, | |
api_key, | |
logging_obj, | |
optional_params=None, | |
litellm_params=None, | |
logger_fn=None, | |
): | |
headers = validate_environment(api_key) | |
if model in custom_prompt_dict: | |
# check if the model has a registered custom prompt | |
model_prompt_details = custom_prompt_dict[model] | |
prompt = custom_prompt( | |
role_dict=model_prompt_details["roles"], | |
initial_prompt_value=model_prompt_details["initial_prompt_value"], | |
final_prompt_value=model_prompt_details["final_prompt_value"], | |
messages=messages, | |
) | |
else: | |
prompt = prompt_factory( | |
model=model, messages=messages, custom_llm_provider="anthropic" | |
) | |
## Load Config | |
config = litellm.AnthropicConfig.get_config() | |
for k, v in config.items(): | |
if ( | |
k not in optional_params | |
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in | |
optional_params[k] = v | |
data = { | |
"model": model, | |
"prompt": prompt, | |
**optional_params, | |
} | |
## LOGGING | |
logging_obj.pre_call( | |
input=prompt, | |
api_key=api_key, | |
additional_args={"complete_input_dict": data, "api_base": api_base}, | |
) | |
## COMPLETION CALL | |
if "stream" in optional_params and optional_params["stream"] == True: | |
response = requests.post( | |
api_base, | |
headers=headers, | |
data=json.dumps(data), | |
stream=optional_params["stream"], | |
) | |
if response.status_code != 200: | |
raise AnthropicError( | |
status_code=response.status_code, message=response.text | |
) | |
return response.iter_lines() | |
else: | |
response = requests.post(api_base, headers=headers, data=json.dumps(data)) | |
if response.status_code != 200: | |
raise AnthropicError( | |
status_code=response.status_code, message=response.text | |
) | |
## LOGGING | |
logging_obj.post_call( | |
input=prompt, | |
api_key=api_key, | |
original_response=response.text, | |
additional_args={"complete_input_dict": data}, | |
) | |
print_verbose(f"raw model_response: {response.text}") | |
## RESPONSE OBJECT | |
try: | |
completion_response = response.json() | |
except: | |
raise AnthropicError( | |
message=response.text, status_code=response.status_code | |
) | |
if "error" in completion_response: | |
raise AnthropicError( | |
message=str(completion_response["error"]), | |
status_code=response.status_code, | |
) | |
else: | |
if len(completion_response["completion"]) > 0: | |
model_response["choices"][0]["message"][ | |
"content" | |
] = completion_response["completion"] | |
model_response.choices[0].finish_reason = completion_response["stop_reason"] | |
## CALCULATING USAGE | |
prompt_tokens = len( | |
encoding.encode(prompt) | |
) ##[TODO] use the anthropic tokenizer here | |
completion_tokens = len( | |
encoding.encode(model_response["choices"][0]["message"].get("content", "")) | |
) ##[TODO] use the anthropic tokenizer here | |
model_response["created"] = int(time.time()) | |
model_response["model"] = model | |
usage = Usage( | |
prompt_tokens=prompt_tokens, | |
completion_tokens=completion_tokens, | |
total_tokens=prompt_tokens + completion_tokens, | |
) | |
model_response.usage = usage | |
return model_response | |
def embedding(): | |
# logic for parsing in - calling - parsing out model embedding calls | |
pass | |