chatbot / src /image_captions.py
kelvin-t-lu's picture
init
dbd2ac6
"""
Based upon ImageCaptionLoader in LangChain version: langchain/document_loaders/image_captions.py
But accepts preloaded model to avoid slowness in use and CUDA forking issues
Loader that loads image captions
By default, the loader utilizes the pre-trained BLIP image captioning model.
https://huggingface.co/Salesforce/blip-image-captioning-base
"""
from typing import List, Union, Any, Tuple
import requests
from langchain.docstore.document import Document
from langchain.document_loaders import ImageCaptionLoader
from utils import get_device, NullContext, clear_torch_cache
from importlib.metadata import distribution, PackageNotFoundError
try:
assert distribution('bitsandbytes') is not None
have_bitsandbytes = True
except (PackageNotFoundError, AssertionError):
have_bitsandbytes = False
class H2OImageCaptionLoader(ImageCaptionLoader):
"""Loader that loads the captions of an image"""
def __init__(self, path_images: Union[str, List[str]] = None,
blip_processor: str = None,
blip_model: str = None,
caption_gpu=True,
load_in_8bit=True,
# True doesn't seem to work, even though https://huggingface.co/Salesforce/blip2-flan-t5-xxl#in-8-bit-precision-int8
load_half=False,
load_gptq='',
load_exllama=False,
use_safetensors=False,
revision=None,
min_new_tokens=20,
max_tokens=50):
if blip_model is None or blip_model is None:
blip_processor = "Salesforce/blip-image-captioning-base"
blip_model = "Salesforce/blip-image-captioning-base"
super().__init__(path_images, blip_processor, blip_model)
self.blip_processor = blip_processor
self.blip_model = blip_model
self.processor = None
self.model = None
self.caption_gpu = caption_gpu
self.context_class = NullContext
self.device = 'cpu'
self.load_in_8bit = load_in_8bit and have_bitsandbytes # only for blip2
self.load_half = load_half
self.load_gptq = load_gptq
self.load_exllama = load_exllama
self.use_safetensors = use_safetensors
self.revision = revision
self.gpu_id = 'auto'
# default prompt
self.prompt = "image of"
self.min_new_tokens = min_new_tokens
self.max_tokens = max_tokens
def set_context(self):
if get_device() == 'cuda' and self.caption_gpu:
import torch
n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0
if n_gpus > 0:
self.context_class = torch.device
self.device = 'cuda'
else:
self.device = 'cpu'
else:
self.device = 'cpu'
def load_model(self):
try:
import transformers
except ImportError:
raise ValueError(
"`transformers` package not found, please install with "
"`pip install transformers`."
)
self.set_context()
if self.model:
if not self.load_in_8bit and self.model.device != self.device:
self.model.to(self.device)
return self
if self.caption_gpu:
if self.gpu_id == 'auto':
# blip2 has issues with multi-GPU. Error says need to somehow set language model in device map
# device_map = 'auto'
device_map = {"": 0}
else:
if self.device == 'cuda':
device_map = {"": self.gpu_id}
else:
device_map = {"": 'cpu'}
else:
device_map = {"": 'cpu'}
import torch
with torch.no_grad():
with self.context_class(self.device):
context_class_cast = NullContext if self.device == 'cpu' else torch.autocast
with context_class_cast(self.device):
if 'blip2' in self.blip_processor.lower():
from transformers import Blip2Processor, Blip2ForConditionalGeneration
if self.load_half and not self.load_in_8bit:
self.processor = Blip2Processor.from_pretrained(self.blip_processor,
device_map=device_map).half()
self.model = Blip2ForConditionalGeneration.from_pretrained(self.blip_model,
device_map=device_map).half()
else:
self.processor = Blip2Processor.from_pretrained(self.blip_processor,
load_in_8bit=self.load_in_8bit,
device_map=device_map,
)
self.model = Blip2ForConditionalGeneration.from_pretrained(self.blip_model,
load_in_8bit=self.load_in_8bit,
device_map=device_map)
else:
from transformers import BlipForConditionalGeneration, BlipProcessor
self.load_half = False # not supported
if self.caption_gpu:
if device_map == 'auto':
# Blip doesn't support device_map='auto'
if self.device == 'cuda':
if self.gpu_id == 'auto':
device_map = {"": 0}
else:
device_map = {"": self.gpu_id}
else:
device_map = {"": 'cpu'}
else:
device_map = {"": 'cpu'}
self.processor = BlipProcessor.from_pretrained(self.blip_processor, device_map=device_map)
self.model = BlipForConditionalGeneration.from_pretrained(self.blip_model,
device_map=device_map)
return self
def set_image_paths(self, path_images: Union[str, List[str]]):
"""
Load from a list of image files
"""
if isinstance(path_images, str):
self.image_paths = [path_images]
else:
self.image_paths = path_images
def load(self, prompt=None) -> List[Document]:
if self.processor is None or self.model is None:
self.load_model()
results = []
for path_image in self.image_paths:
caption, metadata = self._get_captions_and_metadata(
model=self.model, processor=self.processor, path_image=path_image,
prompt=prompt,
)
doc = Document(page_content=caption, metadata=metadata)
results.append(doc)
return results
def unload_model(self):
if hasattr(self, 'model') and hasattr(self.model, 'cpu'):
self.model.cpu()
clear_torch_cache()
def _get_captions_and_metadata(
self, model: Any, processor: Any, path_image: str,
prompt=None) -> Tuple[str, dict]:
"""
Helper function for getting the captions and metadata of an image
"""
if prompt is None:
prompt = self.prompt
try:
from PIL import Image
except ImportError:
raise ValueError(
"`PIL` package not found, please install with `pip install pillow`"
)
try:
if path_image.startswith("http://") or path_image.startswith("https://"):
image = Image.open(requests.get(path_image, stream=True).raw).convert(
"RGB"
)
else:
image = Image.open(path_image).convert("RGB")
except Exception:
raise ValueError(f"Could not get image data for {path_image}")
import torch
with torch.no_grad():
with self.context_class(self.device):
context_class_cast = NullContext if self.device == 'cpu' else torch.autocast
with context_class_cast(self.device):
if self.load_half:
# FIXME: RuntimeError: "slow_conv2d_cpu" not implemented for 'Half'
inputs = processor(image, prompt, return_tensors="pt") # .half()
else:
inputs = processor(image, prompt, return_tensors="pt")
min_length = len(prompt) // 4 + self.min_new_tokens
self.max_tokens = max(self.max_tokens, min_length)
output = model.generate(**inputs, min_length=min_length, max_length=self.max_tokens)
caption: str = processor.decode(output[0], skip_special_tokens=True)
prompti = caption.find(prompt)
if prompti >= 0:
caption = caption[prompti + len(prompt):]
metadata: dict = {"image_path": path_image}
return caption, metadata