Spaces:
Paused
Paused
import gc | |
import datetime | |
import inspect | |
import torch | |
import numpy as np | |
dtype_memory_size_dict = { | |
torch.float64: 64 / 8, | |
torch.double: 64 / 8, | |
torch.float32: 32 / 8, | |
torch.float: 32 / 8, | |
torch.float16: 16 / 8, | |
torch.half: 16 / 8, | |
torch.int64: 64 / 8, | |
torch.long: 64 / 8, | |
torch.int32: 32 / 8, | |
torch.int: 32 / 8, | |
torch.int16: 16 / 8, | |
torch.short: 16 / 6, | |
torch.uint8: 8 / 8, | |
torch.int8: 8 / 8, | |
} | |
# compatibility of torch1.0 | |
if getattr(torch, "bfloat16", None) is not None: | |
dtype_memory_size_dict[torch.bfloat16] = 16 / 8 | |
if getattr(torch, "bool", None) is not None: | |
dtype_memory_size_dict[ | |
torch.bool] = 8 / 8 # pytorch use 1 byte for a bool, see https://github.com/pytorch/pytorch/issues/41571 | |
def get_mem_space(x): | |
try: | |
ret = dtype_memory_size_dict[x] | |
except KeyError: | |
print(f"dtype {x} is not supported!") | |
return ret | |
import contextlib, sys | |
def file_writer(file_name = None): | |
# Create writer object based on file_name | |
writer = open(file_name, "aw") if file_name is not None else sys.stdout | |
# yield the writer object for the actual use | |
yield writer | |
# If it is file, then close the writer object | |
if file_name != None: writer.close() | |
class MemTracker(object): | |
""" | |
Class used to track pytorch memory usage | |
Arguments: | |
detail(bool, default True): whether the function shows the detail gpu memory usage | |
path(str): where to save log file | |
verbose(bool, default False): whether show the trivial exception | |
device(int): GPU number, default is 0 | |
""" | |
def __init__(self, detail=True, path='', verbose=False, device=0, log_to_disk=False): | |
self.print_detail = detail | |
self.last_tensor_sizes = set() | |
self.gpu_profile_fn = path + f'{datetime.datetime.now():%d-%b-%y-%H:%M:%S}-gpu_mem_track.txt' | |
self.verbose = verbose | |
self.begin = True | |
self.device = device | |
self.log_to_disk = log_to_disk | |
def get_tensors(self): | |
for obj in gc.get_objects(): | |
try: | |
if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)): | |
tensor = obj | |
else: | |
continue | |
if tensor.is_cuda: | |
yield tensor | |
except Exception as e: | |
if self.verbose: | |
print('A trivial exception occured: {}'.format(e)) | |
def get_tensor_usage(self): | |
sizes = [np.prod(np.array(tensor.size())) * get_mem_space(tensor.dtype) for tensor in self.get_tensors()] | |
return np.sum(sizes) / 1024 ** 2 | |
def get_allocate_usage(self): | |
return torch.cuda.memory_allocated() / 1024 ** 2 | |
def clear_cache(self): | |
gc.collect() | |
torch.cuda.empty_cache() | |
def print_all_gpu_tensor(self, file=None): | |
for x in self.get_tensors(): | |
print(x.size(), x.dtype, np.prod(np.array(x.size())) * get_mem_space(x.dtype) / 1024 ** 2, file=file) | |
def track(self): | |
""" | |
Track the GPU memory usage | |
""" | |
frameinfo = inspect.stack()[1] | |
where_str = frameinfo.filename + ' line ' + str(frameinfo.lineno) + ': ' + frameinfo.function | |
if self.log_to_disk: | |
file_name = self.gpu_profile_fn | |
else: | |
file_name = None | |
with file_writer(file_name) as f: | |
if self.begin: | |
f.write(f"GPU Memory Track | {datetime.datetime.now():%d-%b-%y-%H:%M:%S} |" | |
f" Total Tensor Used Memory:{self.get_tensor_usage():<7.1f}Mb" | |
f" Total Allocated Memory:{self.get_allocate_usage():<7.1f}Mb\n\n") | |
self.begin = False | |
if self.print_detail is True: | |
ts_list = [(tensor.size(), tensor.dtype) for tensor in self.get_tensors()] | |
new_tensor_sizes = {(type(x), | |
tuple(x.size()), | |
ts_list.count((x.size(), x.dtype)), | |
np.prod(np.array(x.size())) * get_mem_space(x.dtype) / 1024 ** 2, | |
x.dtype) for x in self.get_tensors()} | |
for t, s, n, m, data_type in new_tensor_sizes - self.last_tensor_sizes: | |
f.write( | |
f'+ | {str(n)} * Size:{str(s):<20} | Memory: {str(m * n)[:6]} M | {str(t):<20} | {data_type}\n') | |
for t, s, n, m, data_type in self.last_tensor_sizes - new_tensor_sizes: | |
f.write( | |
f'- | {str(n)} * Size:{str(s):<20} | Memory: {str(m * n)[:6]} M | {str(t):<20} | {data_type}\n') | |
self.last_tensor_sizes = new_tensor_sizes | |
f.write(f"\nAt {where_str:<50}" | |
f" Total Tensor Used Memory:{self.get_tensor_usage():<7.1f}Mb" | |
f" Total Allocated Memory:{self.get_allocate_usage():<7.1f}Mb\n\n") | |