Spaces:
Paused
Paused
## Triton Inference Server | |
To get optimal performance for inference for h2oGPT models, we will be using the [FastTransformer Backend for Triton](https://github.com/triton-inference-server/fastertransformer_backend/). | |
Make sure to [Set Up GPU Docker](README_DOCKER.md#setup-docker-for-gpus) first. | |
### Build Docker image for Triton with FasterTransformer backend: | |
```bash | |
git clone https://github.com/triton-inference-server/fastertransformer_backend.git | |
cd fastertransformer_backend | |
git clone https://github.com/NVIDIA/FasterTransformer.git | |
export WORKSPACE=$(pwd) | |
export CONTAINER_VERSION=22.12 | |
export TRITON_DOCKER_IMAGE=triton_with_ft:${CONTAINER_VERSION} | |
docker build --rm \ | |
--build-arg TRITON_VERSION=${CONTAINER_VERSION} \ | |
-t ${TRITON_DOCKER_IMAGE} \ | |
-f docker/Dockerfile \ | |
. | |
``` | |
### Create model definition files | |
We convert the h2oGPT model from [HF to FT format](https://github.com/NVIDIA/FasterTransformer/pull/569): | |
#### Fetch model from Hugging Face | |
```bash | |
export MODEL=h2ogpt-oig-oasst1-512-6_9b | |
if [ ! -d ${MODEL} ]; then | |
git lfs clone https://huggingface.co/h2oai/${MODEL} | |
fi | |
``` | |
If `git lfs` fails, make sure to install it first. For Ubuntu: | |
```bash | |
sudo apt-get install git-lfs | |
``` | |
#### Convert to FasterTransformer format | |
```bash | |
export WORKSPACE=$(pwd) | |
export TRITON_DOCKER_IMAGE=triton_with_ft:${CONTAINER_VERSION} | |
# Go into Docker | |
docker run -it --rm --runtime=nvidia --shm-size=1g \ | |
--ulimit memlock=-1 -v ${WORKSPACE}:${WORKSPACE} \ | |
-e CUDA_VISIBLE_DEVICES=0 \ | |
-e MODEL=${MODEL} \ | |
-e WORKSPACE=${WORKSPACE} \ | |
-w ${WORKSPACE} ${TRITON_DOCKER_IMAGE} bash | |
export PYTHONPATH=${WORKSPACE}/FasterTransformer/:$PYTHONPATH | |
python3 ${WORKSPACE}/FasterTransformer/examples/pytorch/gptneox/utils/huggingface_gptneox_convert.py \ | |
-i_g 1 \ | |
-m_n gptneox \ | |
-i ${WORKSPACE}/${MODEL} \ | |
-o ${WORKSPACE}/FT-${MODEL} | |
``` | |
#### Test the FasterTransformer model | |
FIXME | |
```bash | |
echo "Hi, who are you?" > gptneox_input | |
echo "And you are?" >> gptneox_input | |
python3 ${WORKSPACE}/FasterTransformer/examples/pytorch/gptneox/gptneox_example.py \ | |
--ckpt_path ${WORKSPACE}/FT-${MODEL}/1-gpu \ | |
--tokenizer_path ${WORKSPACE}/${MODEL} \ | |
--sample_input_file gptneox_input | |
``` | |
#### Update Triton configuration files | |
Fix a typo in the example: | |
```bash | |
sed -i -e 's@postprocessing@preprocessing@' all_models/gptneox/preprocessing/config.pbtxt | |
``` | |
Update the path to the PyTorch model, and set to use 1 GPU: | |
```bash | |
sed -i -e "s@/workspace/ft/models/ft/gptneox/@${WORKSPACE}/FT-${MODEL}/1-gpu@" all_models/gptneox/fastertransformer/config.pbtxt | |
sed -i -e 's@string_value: "2"@string_value: "1"@' all_models/gptneox/fastertransformer/config.pbtxt | |
``` | |
#### Launch Triton | |
```bash | |
CUDA_VISIBLE_DEVICES=0 mpirun -n 1 \ | |
--allow-run-as-root /opt/tritonserver/bin/tritonserver \ | |
--model-repository=${WORKSPACE}/all_models/gptneox/ & | |
``` | |
Now, you should see something like this: | |
```bash | |
+-------------------+---------+--------+ | |
| Model | Version | Status | | |
+-------------------+---------+--------+ | |
| ensemble | 1 | READY | | |
| fastertransformer | 1 | READY | | |
| postprocessing | 1 | READY | | |
| preprocessing | 1 | READY | | |
+-------------------+---------+--------+ | |
``` | |
which means the pipeline is ready to make predictions! | |
### Run client test | |
Let's test the endpoint: | |
```bash | |
python3 ${WORKSPACE}/tools/gpt/identity_test.py | |
``` | |
And now the end-to-end test: | |
We first have to fix a bug in the inputs for postprocessing: | |
```bash | |
sed -i -e 's@prepare_tensor("RESPONSE_INPUT_LENGTHS", output2, FLAGS.protocol)@prepare_tensor("sequence_length", output1, FLAGS.protocol)@' ${WORKSPACE}/tools/gpt/end_to_end_test.py | |
``` | |
```bash | |
python3 ${WORKSPACE}/tools/gpt/end_to_end_test.py | |
``` | |