Spaces:
Paused
Paused
## h2oGPT Installation Help | |
Follow these instructions to get a working Python environment on a Linux system. | |
### Installing CUDA Toolkit | |
E.g. CUDA 12.1 [install cuda coolkit](https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&target_type=deb_local) | |
E.g. for Ubuntu 20.04, select Ubuntu, Version 20.04, Installer Type "deb (local)", and you should get the following commands: | |
```bash | |
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin | |
sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600 | |
wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda-repo-ubuntu2004-12-1-local_12.1.0-530.30.02-1_amd64.deb | |
sudo dpkg -i cuda-repo-ubuntu2004-12-1-local_12.1.0-530.30.02-1_amd64.deb | |
sudo cp /var/cuda-repo-ubuntu2004-12-1-local/cuda-*-keyring.gpg /usr/share/keyrings/ | |
sudo apt-get update | |
sudo apt-get -y install cuda | |
``` | |
Then set the system up to use the freshly installed CUDA location: | |
```bash | |
echo "export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/usr/local/cuda/lib64/" >> ~/.bashrc | |
echo "export CUDA_HOME=/usr/local/cuda" >> ~/.bashrc | |
echo "export PATH=\$PATH:/usr/local/cuda/bin/" >> ~/.bashrc | |
source ~/.bashrc | |
conda activate h2ogpt | |
``` | |
Then reboot the machine, to get everything sync'ed up on restart. | |
```bash | |
sudo reboot | |
``` | |
### Compile bitsandbytes | |
For fast 4-bit and 8-bit training, one needs bitsandbytes. [Compiling bitsandbytes](https://github.com/TimDettmers/bitsandbytes/blob/main/compile_from_source.md) is only required if you have different CUDA than built into bitsandbytes pypi package, | |
which includes CUDA 11.0, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 12.0, 12.1. Here we compile for 12.1 as example. | |
```bash | |
git clone http://github.com/TimDettmers/bitsandbytes.git | |
cd bitsandbytes | |
git checkout 7c651012fce87881bb4e194a26af25790cadea4f | |
CUDA_VERSION=121 make cuda12x | |
CUDA_VERSION=121 python setup.py install | |
cd .. | |
``` | |
### Install nvidia GPU manager if have multiple A100/H100s. | |
```bash | |
sudo apt-key del 7fa2af80 | |
distribution=$(. /etc/os-release;echo $ID$VERSION_ID | sed -e 's/\.//g') | |
wget https://developer.download.nvidia.com/compute/cuda/repos/$distribution/x86_64/cuda-keyring_1.0-1_all.deb | |
sudo dpkg -i cuda-keyring_1.0-1_all.deb | |
sudo apt-get update | |
sudo apt-get install -y datacenter-gpu-manager | |
sudo apt-get install -y libnvidia-nscq-530 | |
sudo systemctl --now enable nvidia-dcgm | |
dcgmi discovery -l | |
``` | |
See [GPU Manager](https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/getting-started.html) | |
### Install and run Fabric Manager if have multiple A100/100s | |
```bash | |
sudo apt-get install cuda-drivers-fabricmanager | |
sudo systemctl start nvidia-fabricmanager | |
sudo systemctl status nvidia-fabricmanager | |
``` | |
See [Fabric Manager](https://docs.nvidia.com/datacenter/tesla/fabric-manager-user-guide/index.html) | |
Once have installed and reboot system, just do: | |
```bash | |
sudo systemctl --now enable nvidia-dcgm | |
dcgmi discovery -l | |
sudo systemctl start nvidia-fabricmanager | |
sudo systemctl status nvidia-fabricmanager | |
``` | |
### Tensorboard (optional) to inspect training | |
```bash | |
tensorboard --logdir=runs/ | |
``` | |
### Flash Attention | |
Update: this is not needed anymore, see https://github.com/h2oai/h2ogpt/issues/128 | |
To use flash attention with LLaMa, need cuda 11.7 so flash attention module compiles against torch. | |
E.g. for Ubuntu, one goes to [cuda toolkit](https://developer.nvidia.com/cuda-11-7-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=20.04&target_type=runfile_local), then: | |
```bash | |
wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_515.43.04_linux.run | |
sudo bash ./cuda_11.7.0_515.43.04_linux.run | |
``` | |
Then No for symlink change, say continue (not abort), accept license, keep only toolkit selected, select install. | |
If cuda 11.7 is not your base installation, then when doing pip install -r requirements.txt do instead: | |
```bash | |
CUDA_HOME=/usr/local/cuda-11.8 pip install -r reqs_optional/requirements_optional_flashattention.txt | |
``` | |