Spaces:
Paused
Paused
File size: 15,179 Bytes
dbd2ac6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
# Run or Build h2oGPT Docker
## Setup Docker for CPU Inference
No special docker instructions are required, just follow [these instructions](https://docs.docker.com/engine/install/ubuntu/) to get docker setup at all. Add your user as part of `docker` group, exit shell, login back in, and run:
```bash
newgrp docker
```
which avoids having to reboot. Or just reboot to have docker access.
## Setup Docker for GPU Inference
Ensure docker installed and ready (requires sudo), can skip if system is already capable of running nvidia containers. Example here is for Ubuntu, see [NVIDIA Containers](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker) for more examples.
```bash
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit-base
sudo apt install nvidia-container-runtime
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
```
If running on A100's, might require [Installing Fabric Manager](INSTALL.md#install-and-run-fabric-manager-if-have-multiple-a100100s) and [Installing GPU Manager](INSTALL.md#install-nvidia-gpu-manager-if-have-multiple-a100h100s).
## Run h2oGPT using Docker
All available public h2oGPT docker images can be found in [Google Container Registry](https://console.cloud.google.com/gcr/images/vorvan/global/h2oai/h2ogpt-runtime).
Ensure image is up-to-date by running:
```bash
docker pull gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0
```
An example running h2oGPT via docker using LLaMa2 7B model is:
```bash
mkdir -p ~/.cache
mkdir -p ~/save
export CUDA_VISIBLE_DEVICES=0
docker run \
--gpus all \
--runtime=nvidia \
--shm-size=2g \
-p 7860:7860 \
--rm --init \
--network host \
-e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES \
-v /etc/passwd:/etc/passwd:ro \
-v /etc/group:/etc/group:ro \
-u `id -u`:`id -g` \
-v "${HOME}"/.cache:/workspace/.cache \
-v "${HOME}"/save:/workspace/save \
gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0 /workspace/generate.py \
--base_model=h2oai/h2ogpt-4096-llama2-7b-chat \
--use_safetensors=True \
--prompt_type=llama2 \
--save_dir='/workspace/save/' \
--use_gpu_id=False \
--score_model=None \
--max_max_new_tokens=2048 \
--max_new_tokens=1024
```
Use `docker run -d` to run in detached background. Then go to http://localhost:7860/ or http://127.0.0.1:7860/.
An example of running h2oGPT via docker using AutoGPTQ (4-bit, so using less GPU memory) with LLaMa2 7B model is:
```bash
mkdir -p $HOME/.cache
mkdir -p $HOME/save
export CUDA_VISIBLE_DEVICES=0
docker run \
--gpus all \
--runtime=nvidia \
--shm-size=2g \
-p 7860:7860 \
--rm --init \
--network host \
-v /etc/passwd:/etc/passwd:ro \
-v /etc/group:/etc/group:ro \
-u `id -u`:`id -g` \
-v "${HOME}"/.cache:/workspace/.cache \
-v "${HOME}"/save:/workspace/save \
-e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES \
gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0 /workspace/generate.py \
--base_model=TheBloke/Llama-2-7b-Chat-GPTQ \
--load_gptq="gptq_model-4bit-128g" \
--use_safetensors=True \
--prompt_type=llama2 \
--save_dir='/workspace/save/' \
--use_gpu_id=False \
--score_model=None \
--max_max_new_tokens=2048 \
--max_new_tokens=1024
```
Use `docker run -d` to run in detached background. Then go to http://localhost:7860/ or http://127.0.0.1:7860/.
If one needs to use a Hugging Face token to access certain Hugging Face models like Meta version of LLaMa2, can run like:
```bash
mkdir -p ~/.cache
mkdir -p ~/save
export CUDA_VISIBLE_DEVICES=0
docker run \
--gpus all \
--runtime=nvidia \
--shm-size=2g \
-p 7860:7860 \
--rm --init \
--network host \
-v /etc/passwd:/etc/passwd:ro \
-v /etc/group:/etc/group:ro \
-u `id -u`:`id -g` \
-v "${HOME}"/.cache:/workspace/.cache \
-v "${HOME}"/save:/workspace/save \
-e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES \
gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0 /workspace/generate.py \
--base_model=h2oai/h2ogpt-4096-llama2-7b-chat \
--prompt_type=llama2 \
--save_dir='/workspace/save/' \
--use_gpu_id=False \
--score_model=None \
--max_max_new_tokens=2048 \
--max_new_tokens=1024
```
Use `docker run -d` to run in detached background.
For [GGML/GPT4All models](FAQ.md#adding-models), one should either download the file and map that path outsider docker to a pain told to h2oGPT for inside docker, or pass a URL that would download the model internally to docker.
See [README_GPU](README_GPU.md) for more details about what to run.
## Run h2oGPT + vLLM or vLLM using Docker
One can run an inference server in one docker and h2oGPT in another docker.
For the vLLM server running on 2 GPUs using h2oai/h2ogpt-4096-llama2-7b-chat model, run:
```bash
docker pull gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0
unset CUDA_VISIBLE_DEVICES
mkdir -p $HOME/.cache/huggingface/hub
mkdir -p $HOME/save
docker run \
--runtime=nvidia \
--gpus '"device=0,1"' \
--shm-size=10.24gb \
-p 5000:5000 \
--rm --init \
--entrypoint /h2ogpt_conda/vllm_env/bin/python3.10 \
-e NCCL_IGNORE_DISABLED_P2P=1 \
-v /etc/passwd:/etc/passwd:ro \
-v /etc/group:/etc/group:ro \
-u `id -u`:`id -g` \
-v "${HOME}"/.cache:/workspace/.cache \
--network host \
gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0 -m vllm.entrypoints.openai.api_server \
--port=5000 \
--host=0.0.0.0 \
--model=h2oai/h2ogpt-4096-llama2-7b-chat \
--tokenizer=hf-internal-testing/llama-tokenizer \
--tensor-parallel-size=2 \
--seed 1234 \
--trust-remote-code \
--download-dir=/workspace/.cache/huggingface/hub &>> logs.vllm_server.txt
```
Use `docker run -d` to run in detached background.
Checks the logs `logs.vllm_server.txt` to make sure server is running.
If ones sees similar output to below, then endpoint it up & running.
```bash
INFO: Started server process [7]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:5000 (Press CTRL+C to quit
```
### Curl Test
One can also verify the endpoint by running following curl command.
```bash
curl http://localhost:5000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "h2oai/h2ogpt-4096-llama2-7b-chat",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'
```
If one sees similar output to below, then endpoint it up & running.
```json
{
"id": "cmpl-4b9584f743ff4dc590f0c168f82b063b",
"object": "text_completion",
"created": 1692796549,
"model": "h2oai/h2ogpt-4096-llama2-7b-chat",
"choices": [
{
"index": 0,
"text": "city in Northern California that is known",
"logprobs": null,
"finish_reason": "length"
}
],
"usage": {
"prompt_tokens": 5,
"total_tokens": 12,
"completion_tokens": 7
}
}
```
If one needs to only setup vLLM one can stop here.
### Run h2oGPT
```bash
mkdir -p ~/.cache
mkdir -p ~/save
docker run \
--gpus '"device=2,3"' \
--runtime=nvidia \
--shm-size=2g \
-p 7860:7860 \
--rm --init \
--network host \
-v /etc/passwd:/etc/passwd:ro \
-v /etc/group:/etc/group:ro \
-u `id -u`:`id -g` \
-v "${HOME}"/.cache:/workspace/.cache \
-v "${HOME}"/save:/workspace/save \
gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0 /workspace/generate.py \
--inference_server="vllm:0.0.0.0:5000" \
--base_model=h2oai/h2ogpt-4096-llama2-7b-chat \
--langchain_mode=UserData
```
Make sure to set `--inference_server` argument to the correct vllm endpoint.
When one is done with the docker instance, run `docker ps` and find the container ID's hash, then run `docker stop <hash>`.
Follow [README_InferenceServers.md](README_InferenceServers.md) for more information on how to setup vLLM.
## Run h2oGPT and TGI using Docker
One can run an inference server in one docker and h2oGPT in another docker.
For the TGI server run (e.g. to run on GPU 0)
```bash
export MODEL=h2oai/h2ogpt-4096-llama2-7b-chat
export CUDA_VISIBLE_DEVICES=0
docker run -d --gpus all \
--shm-size 1g \
--network host \
-e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES \
-p 6112:80 \
-v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.9.3 \
--model-id $MODEL \
--max-input-length 4096 \
--max-total-tokens 8192 \
--max-stop-sequences 6 &>> logs.infserver.txt
```
Each docker can run on any system where network can reach or on same system on different GPUs. E.g. replace `--gpus all` with `--gpus '"device=0,3"'` to run on GPUs 0 and 3, and note the extra quotes, and then `unset CUDA_VISIBLE_DEVICES` and avoid passing that into the docker image. This multi-device format is required to avoid TGI server getting confused about which GPUs are available.
One a low-memory GPU system can add other options to limit batching, e.g.:
```bash
mkdir -p $HOME/.cache/huggingface/hub/
export MODEL=h2oai/h2ogpt-4096-llama2-7b-chat
unset CUDA_VISIBLE_DEVICES
docker run -d --gpus '"device=0"' \
--shm-size 1g \
-p 6112:80 \
-v $HOME/.cache/huggingface/hub/:/data ghcr.io/huggingface/text-generation-inference:0.9.3 \
--model-id $MODEL \
--max-input-length 1024 \
--max-total-tokens 2048 \
--max-batch-prefill-tokens 2048 \
--max-batch-total-tokens 2048 \
--max-stop-sequences 6 &>> logs.infserver.txt
```
Then wait till it comes up (e.g. check docker logs for detached container hash in logs.infserver.txt), about 30 seconds for 7B LLaMa2 on 1 GPU. Then for h2oGPT, just run one of the commands like the above, but add e.g. `--inference_server=192.168.0.1:6112` to the docker command line. E.g. using same export's as above, run:
```bash
export GRADIO_SERVER_PORT=7860
export CUDA_VISIBLE_DEVICES=0
mkdir -p ~/.cache
mkdir -p ~/save
docker run -d \
--gpus all \
--runtime=nvidia \
--shm-size=2g \
-p $GRADIO_SERVER_PORT:$GRADIO_SERVER_PORT \
--rm --init \
--network host \
-v /etc/passwd:/etc/passwd:ro \
-v /etc/group:/etc/group:ro \
-u `id -u`:`id -g` \
-v "${HOME}"/.cache:/workspace/.cache \
-v "${HOME}"/save:/workspace/save \
-e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES \
gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0 /workspace/generate.py \
--base_model=$MODEL \
--inference_server=http://localhost:6112 \
--prompt_type=llama2 \
--save_dir='/workspace/save/' \
--use_gpu_id=False \
--score_model=None \
--max_max_new_tokens=4096 \
--max_new_tokens=1024
```
or change `max_max_new_tokens` to `2048` for low-memory case. Note the h2oGPT container has `--network host` with same port inside and outside so the other container on same host can see it. Otherwise use actual IP addersses if on separate hosts.
For maximal summarization performance when connecting to TGI server, auto-detection of file changes in `--user_path` every query, and maximum document filling of context, add these options:
```
--num_async=10 \
--top_k_docs=-1
--detect_user_path_changes_every_query=True
```
When one is done with the docker instance, run `docker ps` and find the container ID's hash, then run `docker stop <hash>`.
Follow [README_InferenceServers.md](README_InferenceServers.md) for similar (and more) examples of how to launch TGI server using docker.
## Make UserData db for generate.py using Docker
To make UserData db for generate.py, put pdfs, etc. into path user_path and run:
```bash
mkdir -p ~/.cache
mkdir -p ~/save
mkdir -p user_path
mkdir -p db_dir_UserData
docker run \
--gpus all \
--runtime=nvidia \
--shm-size=2g \
--rm --init \
--network host \
-v /etc/passwd:/etc/passwd:ro \
-v /etc/group:/etc/group:ro \
-u `id -u`:`id -g` \
-v "${HOME}"/.cache:/workspace/.cache \
-v "${HOME}"/save:/workspace/save \
-v user_path:/workspace/user_path \
-v db_dir_UserData:/workspace/db_dir_UserData \
gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0 /workspace/src/make_db.py
```
Once db is made, can use in generate.py like:
```bash
export CUDA_VISIBLE_DEVICES=0
docker run \
--gpus all \
--runtime=nvidia \
--shm-size=2g \
-p 7860:7860 \
--rm --init \
--network host \
-e CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES \
-v /etc/passwd:/etc/passwd:ro \
-v /etc/group:/etc/group:ro \
-u `id -u`:`id -g` \
-v "${HOME}"/.cache:/workspace/.cache \
-v "${HOME}"/save:/workspace/save \
-v user_path:/workspace/user_path \
-v db_dir_UserData:/workspace/db_dir_UserData \
gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0 /workspace/generate.py \
--base_model=h2oai/h2ogpt-4096-llama2-7b-chat \
--use_safetensors=True \
--prompt_type=llama2 \
--save_dir='/workspace/save/' \
--use_gpu_id=False \
--score_model=None \
--max_max_new_tokens=2048 \
--max_new_tokens=1024 \
--langchain_mode=UserData
```
For a more detailed description of other parameters of the make_db script, checkout the definition in this file: https://github.com/h2oai/h2ogpt/blob/main/src/make_db.py
## Build Docker
```bash
# build image
touch build_info.txt
docker build -t h2ogpt .
```
then to run this version of the docker image, just replace `gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0` with `h2ogpt:latest` in above run command.
when any of the prebuilt dependencies are changed, e.g. duckdb or auto-gptq, you need to run `make docker_build_deps` or similar code what's in that Makefile target.
## Docker Compose Setup & Inference
1. (optional) Change desired model and weights under `environment` in the `docker-compose.yml`
2. Build and run the container
```bash
docker-compose up -d --build
```
3. Open `https://localhost:7860` in the browser
4. See logs:
```bash
docker-compose logs -f
```
5. Clean everything up:
```bash
docker-compose down --volumes --rmi all
```
|