Spaces:
Sleeping
Sleeping
import argparse | |
import os | |
from pathlib import Path | |
import logging | |
import re_matching | |
import uuid | |
from flask import Flask, request, jsonify, render_template_string | |
from flask_cors import CORS | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
logging.getLogger("markdown_it").setLevel(logging.WARNING) | |
logging.getLogger("urllib3").setLevel(logging.WARNING) | |
logging.getLogger("matplotlib").setLevel(logging.WARNING) | |
logging.basicConfig( | |
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s" | |
) | |
logger = logging.getLogger(__name__) | |
import librosa | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torch.utils.data import Dataset | |
from torch.utils.data import DataLoader, Dataset | |
from tqdm import tqdm | |
import utils | |
from config import config | |
import requests | |
import torch | |
import commons | |
from text import cleaned_text_to_sequence, get_bert | |
from clap_wrapper import get_clap_audio_feature, get_clap_text_feature | |
from text.cleaner import clean_text | |
import utils | |
from models import SynthesizerTrn | |
from text.symbols import symbols | |
import sys | |
from scipy.io.wavfile import write | |
net_g = None | |
device = ( | |
"cuda:0" | |
if torch.cuda.is_available() | |
else ( | |
"mps" | |
if sys.platform == "darwin" and torch.backends.mps.is_available() | |
else "cpu" | |
) | |
) | |
#device = 'cpu' | |
def get_net_g(model_path: str, device: str, hps): | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model, | |
).to(device) | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) | |
return net_g | |
def get_text(text, language_str, hps, device): | |
norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
#print(text) | |
if hps.data.add_blank: | |
phone = commons.intersperse(phone, 0) | |
tone = commons.intersperse(tone, 0) | |
language = commons.intersperse(language, 0) | |
for i in range(len(word2ph)): | |
word2ph[i] = word2ph[i] * 2 | |
word2ph[0] += 1 | |
bert_ori = get_bert(norm_text, word2ph, language_str, device) | |
del word2ph | |
assert bert_ori.shape[-1] == len(phone), phone | |
if language_str == "ZH": | |
bert = bert_ori | |
ja_bert = torch.zeros(1024, len(phone)) | |
en_bert = torch.zeros(1024, len(phone)) | |
elif language_str == "JP": | |
bert = torch.zeros(1024, len(phone)) | |
ja_bert = bert_ori | |
en_bert = torch.zeros(1024, len(phone)) | |
else: | |
raise ValueError("language_str should be ZH, JP or EN") | |
assert bert.shape[-1] == len( | |
phone | |
), f"Bert seq len {bert.shape[-1]} != {len(phone)}" | |
phone = torch.LongTensor(phone) | |
tone = torch.LongTensor(tone) | |
language = torch.LongTensor(language) | |
return bert, ja_bert, en_bert, phone, tone, language | |
def infer( | |
text, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
sid, | |
reference_audio=None, | |
emotion='Happy', | |
): | |
language= 'JP' if is_japanese(text) else 'ZH' | |
if isinstance(reference_audio, np.ndarray): | |
emo = get_clap_audio_feature(reference_audio, device) | |
else: | |
emo = get_clap_text_feature(emotion, device) | |
emo = torch.squeeze(emo, dim=1) | |
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text( | |
text, language, hps, device | |
) | |
with torch.no_grad(): | |
x_tst = phones.to(device).unsqueeze(0) | |
tones = tones.to(device).unsqueeze(0) | |
lang_ids = lang_ids.to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
ja_bert = ja_bert.to(device).unsqueeze(0) | |
en_bert = en_bert.to(device).unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) | |
emo = emo.to(device).unsqueeze(0) | |
del phones | |
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) | |
audio = ( | |
net_g.infer( | |
x_tst, | |
x_tst_lengths, | |
speakers, | |
tones, | |
lang_ids, | |
bert, | |
ja_bert, | |
en_bert, | |
emo, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
)[0][0, 0] | |
.data.cpu() | |
.float() | |
.numpy() | |
) | |
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
unique_filename = f"temp{uuid.uuid4()}.wav" | |
write(unique_filename, 44100, audio) | |
return unique_filename | |
def is_japanese(string): | |
for ch in string: | |
if ord(ch) > 0x3040 and ord(ch) < 0x30FF: | |
return True | |
return False | |
def loadmodel(model): | |
try: | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True) | |
return "success" | |
except: | |
return "error" | |
def send_audio_to_server(audio_path,text): | |
url="http://127.0.0.1:3000/response" | |
files = {'file': open(audio_path, 'rb')} | |
data = {'text': text} | |
try: | |
response = requests.post(url, files=files,data=data) | |
return response.status_code, response.text | |
except Exception as e: | |
return 500, str(e) | |
app = Flask(__name__) | |
CORS(app) | |
def tts(): | |
global last_text, last_model | |
speaker = request.args.get('speaker') | |
sdp_ratio = float(request.args.get('sdp_ratio', 0.2)) | |
noise_scale = float(request.args.get('noise_scale', 0.6)) | |
noise_scale_w = float(request.args.get('noise_scale_w', 0.8)) | |
length_scale = float(request.args.get('length_scale', 1)) | |
emotion = request.args.get('emotion', 'happy') | |
text = request.args.get('text') | |
is_chat = request.args.get('is_chat', 'false').lower() == 'true' | |
model = request.args.get('model',modelPaths[-1]) | |
if not speaker or not text: | |
return render_template_string(""" | |
<!DOCTYPE html> | |
<html> | |
<head> | |
<title>TTS API Documentation</title> | |
</head> | |
<body> | |
<iframe src="http://love.soyorin.top" style="width:100%; height:100vh; border:none;"></iframe> | |
</body> | |
</html> | |
""") | |
if model != last_model: | |
unique_filename = loadmodel(model) | |
last_model = model | |
if is_chat and text == last_text: | |
# Generate 1 second of silence and return | |
unique_filename = 'blank.wav' | |
silence = np.zeros(44100, dtype=np.int16) | |
write(unique_filename , 44100, silence) | |
else: | |
last_text = text | |
unique_filename = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale,sid = speaker, reference_audio=None, emotion=emotion) | |
status_code, response_text = send_audio_to_server(unique_filename,text) | |
print(f"Response from server: {response_text} (Status code: {status_code})") | |
with open(unique_filename ,'rb') as bit: | |
wav_bytes = bit.read() | |
os.remove(unique_filename) | |
headers = { | |
'Content-Type': 'audio/wav', | |
'Text': unique_filename .encode('utf-8')} | |
return wav_bytes, 200, headers | |
if __name__ == "__main__": | |
languages = [ "Auto", "ZH", "JP"] | |
modelPaths = [] | |
for dirpath, dirnames, filenames in os.walk("Data/BangDreamV22/models/"): | |
for filename in filenames: | |
modelPaths.append(os.path.join(dirpath, filename)) | |
hps = utils.get_hparams_from_file('Data/BangDreamV22/configs/config.json') | |
net_g = get_net_g( | |
model_path=modelPaths[-1], device=device, hps=hps | |
) | |
speaker_ids = hps.data.spk2id | |
speakers = list(speaker_ids.keys()) | |
last_text = "" | |
last_model = modelPaths[-1] | |
app.run(host="0.0.0.0", port=5000) |