Spaces:
Sleeping
Sleeping
# flake8: noqa: E402 | |
import os | |
import logging | |
import re_matching | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
logging.getLogger("markdown_it").setLevel(logging.WARNING) | |
logging.getLogger("urllib3").setLevel(logging.WARNING) | |
logging.getLogger("matplotlib").setLevel(logging.WARNING) | |
logging.basicConfig( | |
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s" | |
) | |
logger = logging.getLogger(__name__) | |
import warnings | |
warnings.filterwarnings("ignore", category=UserWarning, module="gradio.blocks") | |
import shutil | |
from datetime import datetime | |
import re | |
import torch | |
import utils | |
from infer import infer, latest_version, get_net_g | |
import gradio as gr | |
import numpy as np | |
from tools.sentence import extrac, is_japanese, is_chinese, seconds_to_ass_time, extract_text_from_file, remove_annotations | |
import sys | |
import math | |
from scipy.io.wavfile import write | |
from tools.translate import translate | |
import random | |
net_g = None | |
cara_list = ["ひまり","たえ","彩","日菜","美咲","ましろ","燐子","香子","珠緒","たえ"] | |
BandList = { | |
"PoppinParty":["香澄","有咲","たえ","りみ","沙綾"], | |
"Afterglow":["蘭","モカ","ひまり","巴","つぐみ"], | |
"HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"], | |
"PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"], | |
"Roselia":["友希那","紗夜","リサ","燐子","あこ"], | |
"RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"], | |
"Morfonica":["ましろ","瑠唯","つくし","七深","透子"], | |
"MyGo&AveMujica(Part)":["燈","愛音","そよ","立希","楽奈","祥子","睦","海鈴"], | |
"圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"], | |
"凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"], | |
"弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"], | |
"西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"] | |
} | |
device = ( | |
"cuda:0" | |
if torch.cuda.is_available() | |
else ( | |
"mps" | |
if sys.platform == "darwin" and torch.backends.mps.is_available() | |
else "cpu" | |
) | |
) | |
def generate_audio( | |
text, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
speaker, | |
language, | |
): | |
if len(text) < 2: | |
return | |
with torch.no_grad(): | |
if language == 'Auto': | |
language = "EN" | |
if is_japanese(text): | |
language = "JP" | |
elif is_chinese(text): | |
language = "ZH" | |
current_time = datetime.now() | |
print(str(current_time)+':'+str(speaker)+":"+language) | |
audio = infer( | |
text, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
sid=speaker, | |
language=language, | |
hps=hps, | |
net_g=net_g, | |
device=device, | |
) | |
return gr.processing_utils.convert_to_16_bit_wav(audio) | |
def tts_fn( | |
text: str, | |
speaker, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
language, | |
LongSentence, | |
): | |
if not LongSentence: | |
with torch.no_grad(): | |
audio = generate_audio( | |
text, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
speaker=speaker, | |
language= language, | |
) | |
torch.cuda.empty_cache() | |
return (hps.data.sampling_rate, audio) | |
else: | |
final_list = extrac(text) | |
audio_fin = [] | |
for sentence in final_list: | |
if len(sentence) > 1: | |
with torch.no_grad(): | |
audio = generate_audio( | |
sentence, | |
sdp_ratio=sdp_ratio, | |
noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, | |
length_scale=length_scale, | |
speaker=speaker, | |
language= language, | |
) | |
silence_frames = int(math.log(len(sentence)+1, 1000) * 44010) if is_chinese(sentence) else int(math.log(len(sentence)+1, 3000) * 44010) | |
silence_data = np.zeros((silence_frames,), dtype=audio.dtype) | |
audio_fin.append(audio) | |
audio_fin.append(silence_data) | |
return (hps.data.sampling_rate, np.concatenate(audio_fin)) | |
def generate_audio_and_srt_for_group(group, outputPath, group_index, sampling_rate, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime): | |
audio_fin = [] | |
ass_entries = [] | |
start_time = 0 | |
speaker = random.choice(cara_list) | |
ass_header = """[Script Info] | |
; 我没意见 | |
Title: Audiobook | |
ScriptType: v4.00+ | |
WrapStyle: 0 | |
PlayResX: 640 | |
PlayResY: 360 | |
ScaledBorderAndShadow: yes | |
[V4+ Styles] | |
Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding | |
Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,1,1,2,10,10,10,1 | |
[Events] | |
Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text | |
""" | |
for sentence in group: | |
try: | |
FakeSpeaker = sentence.split("|")[0] | |
print(FakeSpeaker) | |
SpeakersList = re.split('\n', spealerList) | |
if FakeSpeaker in list(hps.data.spk2id.keys()): | |
speaker = FakeSpeaker | |
for i in SpeakersList: | |
if FakeSpeaker == i.split("|")[1]: | |
speaker = i.split("|")[0] | |
if sentence != '\n': | |
audio = generate_audio(remove_annotations(sentence.split("|")[-1]).replace(" ",""), speaker=speaker, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, language='Auto') | |
silence_frames = int(silenceTime * 44010) | |
silence_data = np.zeros((silence_frames,), dtype=audio.dtype) | |
audio_fin.append(audio) | |
audio_fin.append(silence_data) | |
duration = len(audio) / sampling_rate | |
end_time = start_time + duration + silenceTime | |
ass_entries.append("Dialogue: 0,{},{},".format(seconds_to_ass_time(start_time), seconds_to_ass_time(end_time)) + "Default,,0,0,0,,{}".format(sentence.replace("|",":"))) | |
start_time = end_time | |
except: | |
pass | |
wav_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.wav') | |
ass_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.ass') | |
write(wav_filename, sampling_rate, np.concatenate(audio_fin)) | |
with open(ass_filename, 'w', encoding='utf-8') as f: | |
f.write(ass_header + '\n'.join(ass_entries)) | |
return (hps.data.sampling_rate, np.concatenate(audio_fin)) | |
def audiobook(inputFile, groupsize, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime,filepath): | |
directory_path = filepath if torch.cuda.is_available() else "books" | |
if os.path.exists(directory_path): | |
shutil.rmtree(directory_path) | |
os.makedirs(directory_path) | |
text = extract_text_from_file(inputFile.name) | |
sentences = extrac(text) | |
GROUP_SIZE = groupsize | |
for i in range(0, len(sentences), GROUP_SIZE): | |
group = sentences[i:i+GROUP_SIZE] | |
if spealerList == "": | |
spealerList = "无" | |
result = generate_audio_and_srt_for_group(group,directory_path, i//GROUP_SIZE + 1, 44100, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime) | |
if not torch.cuda.is_available(): | |
return result | |
return result | |
def loadmodel(model): | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True) | |
return "success" | |
if __name__ == "__main__": | |
hps = utils.get_hparams_from_file('Data/BangDream/config.json') | |
version = hps.version if hasattr(hps, "version") else latest_version | |
net_g = get_net_g( | |
model_path='Data/BangDream/models/G_33000.pth', version=version, device=device, hps=hps | |
) | |
speaker_ids = hps.data.spk2id | |
speakers = list(speaker_ids.keys()) | |
languages = [ "Auto", "ZH", "JP"] | |
modelPaths = [] | |
for dirpath, dirnames, filenames in os.walk("Data/BangDream/models/"): | |
for filename in filenames: | |
modelPaths.append(os.path.join(dirpath, filename)) | |
with gr.Blocks() as app: | |
gr.Markdown(value=""" | |
少歌邦邦全员在线语音合成(Bert-Vits2)\n | |
作者:B站@Mahiroshi https://space.bilibili.com/19874615\n | |
声音归属:BangDream及少歌手游\n | |
Bert-VITS2项目:https://github.com/Stardust-minus/Bert-VITS2\n | |
使用参考: https://nijigaku.top/2023/10/03/BangDreamTTS\n | |
数据集制作: https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/tree/main/%E7%88%AC%E8%99%AB | |
服务器启动示例: https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/server.py\n | |
使用本模型请严格遵守法律法规!禁止生成任何有损声优或者企划的内容!!!!!\n | |
このモデルを使用する際は法律法規を厳守してください!声優や企画に損害を与える内容の生成は禁止です!!!!!\n | |
Please strictly follow the laws in your country and regulations when using this model! It is prohibited to generate any content that is harmful to others!!!!!\n | |
发布二创作品请标注本项目作者及链接、作品使用Bert-VITS2 AI生成!\n | |
""") | |
for band in BandList: | |
with gr.TabItem(band): | |
for name in BandList[band]: | |
with gr.TabItem(name): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown( | |
'<div align="center">' | |
f'<img style="width:auto;height:400px;" src="file/image/{name}.png">' | |
'</div>' | |
) | |
length_scale = gr.Slider( | |
minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节" | |
) | |
LongSentence = gr.Checkbox(value=False, label="自动拆分句子") | |
with gr.Accordion(label="切换模型", open=False): | |
modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value") | |
btnMod = gr.Button("载入模型") | |
statusa = gr.TextArea() | |
btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa]) | |
with gr.Column(): | |
text = gr.TextArea( | |
label="输入纯日语或者中文", | |
placeholder="输入纯日语或者中文", | |
value="有个人躺在地上,哀嚎......\n有个人睡着了,睡在盒子里。\n我要把它打开,看看他的梦是什么。", | |
) | |
btn = gr.Button("点击生成", variant="primary") | |
audio_output = gr.Audio(label="Output Audio") | |
btntran = gr.Button("快速中翻日") | |
translateResult = gr.TextArea("从这复制翻译后的文本") | |
btntran.click(translate, inputs=[text], outputs = [translateResult]) | |
with gr.Accordion(label="其它参数设定", open=False): | |
sdp_ratio = gr.Slider( | |
minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比" | |
) | |
noise_scale = gr.Slider( | |
minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节" | |
) | |
noise_scale_w = gr.Slider( | |
minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度" | |
) | |
language = gr.Dropdown( | |
choices=languages, value=languages[0], label="选择语言(默认自动)" | |
) | |
speaker = gr.Dropdown( | |
choices=speakers, value=name, label="说话人" | |
) | |
btn.click( | |
tts_fn, | |
inputs=[ | |
text, | |
speaker, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
language, | |
LongSentence, | |
], | |
outputs=[audio_output], | |
) | |
with gr.Tab('拓展功能'): | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown( | |
f"从 <a href='https://nijigaku.top/2023/10/03/BangDreamTTS/'>我的博客站点</a> 查看自制galgame使用说明\n</a>" | |
) | |
inputFile = gr.UploadButton(label="上传txt(可设置角色对应表)、epub或mobi文件") | |
groupSize = gr.Slider( | |
minimum=10, maximum=1000 if torch.cuda.is_available() else 50,value = 50, step=1, label="单个音频文件包含的最大字数" | |
) | |
silenceTime = gr.Slider( | |
minimum=0, maximum=1, value=0.5, step=0.1, label="句子的间隔" | |
) | |
filepath = gr.TextArea( | |
label="本地合成时的音频存储文件夹(会清空文件夹警告)", | |
value = "D:/audiobook/book1", | |
) | |
spealerList = gr.TextArea( | |
label="角色对应表(example)", | |
placeholder="左边是你想要在每一句话合成中用到的speaker(见角色清单)右边是你上传文本时分隔符左边设置的说话人:{ChoseSpeakerFromConfigList1}|{SeakerInUploadText1}\n{ChoseSpeakerFromConfigList2}|{SeakerInUploadText2}\n{ChoseSpeakerFromConfigList3}|{SeakerInUploadText3}\n", | |
value = "ましろ|真白\n七深|七深\n透子|透子\nつくし|筑紫\n瑠唯|瑠唯\nそよ|素世\n祥子|祥子", | |
) | |
speaker = gr.Dropdown( | |
choices=speakers, value = "ましろ", label="选择默认说话人" | |
) | |
with gr.Column(): | |
sdp_ratio = gr.Slider( | |
minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比" | |
) | |
noise_scale = gr.Slider( | |
minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节" | |
) | |
noise_scale_w = gr.Slider( | |
minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度" | |
) | |
length_scale = gr.Slider( | |
minimum=0.1, maximum=2, value=1, step=0.01, label="生成长度" | |
) | |
LastAudioOutput = gr.Audio(label="当使用cuda时才能在本地文件夹浏览全部文件") | |
btn2 = gr.Button("点击生成", variant="primary") | |
btn2.click( | |
audiobook, | |
inputs=[ | |
inputFile, | |
groupSize, | |
speaker, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
spealerList, | |
silenceTime, | |
filepath | |
], | |
outputs=[LastAudioOutput], | |
) | |
print("推理页面已开启!") | |
app.launch() |