Mahiruoshi's picture
Update app.py
545551c
raw
history blame
17.2 kB
# flake8: noqa: E402
import os
import logging
import re_matching
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)
logger = logging.getLogger(__name__)
import warnings
warnings.filterwarnings("ignore", category=UserWarning, module="gradio.blocks")
import shutil
from datetime import datetime
import re
import torch
import utils
from infer import infer, latest_version, get_net_g
import gradio as gr
import numpy as np
from tools.sentence import extrac, is_japanese, is_chinese, seconds_to_ass_time, extract_text_from_file, remove_annotations
import sys
import math
from scipy.io.wavfile import write
from tools.translate import translate
import random
net_g = None
cara_list = ["ひまり","たえ","彩","日菜","美咲","ましろ","燐子","香子","珠緒","たえ"]
BandList = {
"PoppinParty":["香澄","有咲","たえ","りみ","沙綾"],
"Afterglow":["蘭","モカ","ひまり","巴","つぐみ"],
"HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"],
"PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"],
"Roselia":["友希那","紗夜","リサ","燐子","あこ"],
"RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"],
"Morfonica":["ましろ","瑠唯","つくし","七深","透子"],
"MyGo&AveMujica(Part)":["燈","愛音","そよ","立希","楽奈","祥子","睦","海鈴"],
"圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"],
"凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"],
"弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"],
"西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"]
}
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
def generate_audio(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
speaker,
language,
):
if len(text) < 2:
return
with torch.no_grad():
if language == 'Auto':
language = "EN"
if is_japanese(text):
language = "JP"
elif is_chinese(text):
language = "ZH"
current_time = datetime.now()
print(str(current_time)+':'+str(speaker)+":"+language)
audio = infer(
text,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sid=speaker,
language=language,
hps=hps,
net_g=net_g,
device=device,
)
return gr.processing_utils.convert_to_16_bit_wav(audio)
def tts_fn(
text: str,
speaker,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
language,
LongSentence,
):
if not LongSentence:
with torch.no_grad():
audio = generate_audio(
text,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
speaker=speaker,
language= language,
)
torch.cuda.empty_cache()
return (hps.data.sampling_rate, audio)
else:
final_list = extrac(text)
audio_fin = []
for sentence in final_list:
if len(sentence) > 1:
with torch.no_grad():
audio = generate_audio(
sentence,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
speaker=speaker,
language= language,
)
silence_frames = int(math.log(len(sentence)+1, 1000) * 44010) if is_chinese(sentence) else int(math.log(len(sentence)+1, 3000) * 44010)
silence_data = np.zeros((silence_frames,), dtype=audio.dtype)
audio_fin.append(audio)
audio_fin.append(silence_data)
return (hps.data.sampling_rate, np.concatenate(audio_fin))
def generate_audio_and_srt_for_group(group, outputPath, group_index, sampling_rate, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime):
audio_fin = []
ass_entries = []
start_time = 0
speaker = random.choice(cara_list)
ass_header = """[Script Info]
; 我没意见
Title: Audiobook
ScriptType: v4.00+
WrapStyle: 0
PlayResX: 640
PlayResY: 360
ScaledBorderAndShadow: yes
[V4+ Styles]
Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding
Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,1,1,2,10,10,10,1
[Events]
Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text
"""
for sentence in group:
try:
FakeSpeaker = sentence.split("|")[0]
print(FakeSpeaker)
SpeakersList = re.split('\n', spealerList)
if FakeSpeaker in list(hps.data.spk2id.keys()):
speaker = FakeSpeaker
for i in SpeakersList:
if FakeSpeaker == i.split("|")[1]:
speaker = i.split("|")[0]
if sentence != '\n':
audio = generate_audio(remove_annotations(sentence.split("|")[-1]).replace(" ",""), speaker=speaker, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, language='Auto')
silence_frames = int(silenceTime * 44010)
silence_data = np.zeros((silence_frames,), dtype=audio.dtype)
audio_fin.append(audio)
audio_fin.append(silence_data)
duration = len(audio) / sampling_rate
end_time = start_time + duration + silenceTime
ass_entries.append("Dialogue: 0,{},{},".format(seconds_to_ass_time(start_time), seconds_to_ass_time(end_time)) + "Default,,0,0,0,,{}".format(sentence.replace("|",":")))
start_time = end_time
except:
pass
wav_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.wav')
ass_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.ass')
write(wav_filename, sampling_rate, np.concatenate(audio_fin))
with open(ass_filename, 'w', encoding='utf-8') as f:
f.write(ass_header + '\n'.join(ass_entries))
return (hps.data.sampling_rate, np.concatenate(audio_fin))
def audiobook(inputFile, groupsize, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime,filepath):
directory_path = filepath if torch.cuda.is_available() else "books"
if os.path.exists(directory_path):
shutil.rmtree(directory_path)
os.makedirs(directory_path)
text = extract_text_from_file(inputFile.name)
sentences = extrac(text)
GROUP_SIZE = groupsize
for i in range(0, len(sentences), GROUP_SIZE):
group = sentences[i:i+GROUP_SIZE]
if spealerList == "":
spealerList = "无"
result = generate_audio_and_srt_for_group(group,directory_path, i//GROUP_SIZE + 1, 44100, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime)
if not torch.cuda.is_available():
return result
return result
def loadmodel(model):
_ = net_g.eval()
_ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True)
return "success"
if __name__ == "__main__":
hps = utils.get_hparams_from_file('Data/BangDream/config.json')
version = hps.version if hasattr(hps, "version") else latest_version
net_g = get_net_g(
model_path='Data/BangDream/models/G_33000.pth', version=version, device=device, hps=hps
)
speaker_ids = hps.data.spk2id
speakers = list(speaker_ids.keys())
languages = [ "Auto", "ZH", "JP"]
modelPaths = []
for dirpath, dirnames, filenames in os.walk("Data/BangDream/models/"):
for filename in filenames:
modelPaths.append(os.path.join(dirpath, filename))
with gr.Blocks() as app:
gr.Markdown(value="""
少歌邦邦全员在线语音合成(Bert-Vits2)\n
作者:B站@Mahiroshi https://space.bilibili.com/19874615\n
声音归属:BangDream及少歌手游\n
Bert-VITS2项目:https://github.com/Stardust-minus/Bert-VITS2\n
使用参考: https://nijigaku.top/2023/10/03/BangDreamTTS\n
数据集制作: https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/tree/main/%E7%88%AC%E8%99%AB
服务器启动示例: https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/server.py\n
使用本模型请严格遵守法律法规!禁止生成任何有损声优或者企划的内容!!!!!\n
このモデルを使用する際は法律法規を厳守してください!声優や企画に損害を与える内容の生成は禁止です!!!!!\n
Please strictly follow the laws in your country and regulations when using this model! It is prohibited to generate any content that is harmful to others!!!!!\n
发布二创作品请标注本项目作者及链接、作品使用Bert-VITS2 AI生成!\n
""")
for band in BandList:
with gr.TabItem(band):
for name in BandList[band]:
with gr.TabItem(name):
with gr.Row():
with gr.Column():
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<img style="width:auto;height:400px;" src="file/image/{name}.png">'
'</div>'
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节"
)
LongSentence = gr.Checkbox(value=False, label="自动拆分句子")
with gr.Accordion(label="切换模型", open=False):
modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value")
btnMod = gr.Button("载入模型")
statusa = gr.TextArea()
btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa])
with gr.Column():
text = gr.TextArea(
label="输入纯日语或者中文",
placeholder="输入纯日语或者中文",
value="有个人躺在地上,哀嚎......\n有个人睡着了,睡在盒子里。\n我要把它打开,看看他的梦是什么。",
)
btn = gr.Button("点击生成", variant="primary")
audio_output = gr.Audio(label="Output Audio")
btntran = gr.Button("快速中翻日")
translateResult = gr.TextArea("从这复制翻译后的文本")
btntran.click(translate, inputs=[text], outputs = [translateResult])
with gr.Accordion(label="其它参数设定", open=False):
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度"
)
language = gr.Dropdown(
choices=languages, value=languages[0], label="选择语言(默认自动)"
)
speaker = gr.Dropdown(
choices=speakers, value=name, label="说话人"
)
btn.click(
tts_fn,
inputs=[
text,
speaker,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
language,
LongSentence,
],
outputs=[audio_output],
)
with gr.Tab('拓展功能'):
with gr.Row():
with gr.Column():
gr.Markdown(
f"从 <a href='https://nijigaku.top/2023/10/03/BangDreamTTS/'>我的博客站点</a> 查看自制galgame使用说明\n</a>"
)
inputFile = gr.UploadButton(label="上传txt(可设置角色对应表)、epub或mobi文件")
groupSize = gr.Slider(
minimum=10, maximum=1000 if torch.cuda.is_available() else 50,value = 50, step=1, label="单个音频文件包含的最大字数"
)
silenceTime = gr.Slider(
minimum=0, maximum=1, value=0.5, step=0.1, label="句子的间隔"
)
filepath = gr.TextArea(
label="本地合成时的音频存储文件夹(会清空文件夹警告)",
value = "D:/audiobook/book1",
)
spealerList = gr.TextArea(
label="角色对应表(example)",
placeholder="左边是你想要在每一句话合成中用到的speaker(见角色清单)右边是你上传文本时分隔符左边设置的说话人:{ChoseSpeakerFromConfigList1}|{SeakerInUploadText1}\n{ChoseSpeakerFromConfigList2}|{SeakerInUploadText2}\n{ChoseSpeakerFromConfigList3}|{SeakerInUploadText3}\n",
value = "ましろ|真白\n七深|七深\n透子|透子\nつくし|筑紫\n瑠唯|瑠唯\nそよ|素世\n祥子|祥子",
)
speaker = gr.Dropdown(
choices=speakers, value = "ましろ", label="选择默认说话人"
)
with gr.Column():
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度"
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.01, label="生成长度"
)
LastAudioOutput = gr.Audio(label="当使用cuda时才能在本地文件夹浏览全部文件")
btn2 = gr.Button("点击生成", variant="primary")
btn2.click(
audiobook,
inputs=[
inputFile,
groupSize,
speaker,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
spealerList,
silenceTime,
filepath
],
outputs=[LastAudioOutput],
)
print("推理页面已开启!")
app.launch()