Spaces:
Sleeping
Sleeping
File size: 26,258 Bytes
5422b18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 |
"""
api服务 多版本多模型 fastapi实现
"""
import logging
import gc
import random
from pydantic import BaseModel
import gradio
import numpy as np
import utils
from fastapi import FastAPI, Query, Request
from fastapi.responses import Response, FileResponse
from fastapi.staticfiles import StaticFiles
from io import BytesIO
from scipy.io import wavfile
import uvicorn
import torch
import webbrowser
import psutil
import GPUtil
from typing import Dict, Optional, List, Set
import os
from tools.log import logger
from urllib.parse import unquote
from infer import infer, get_net_g, latest_version
import tools.translate as trans
from re_matching import cut_sent
from config import config
os.environ["TOKENIZERS_PARALLELISM"] = "false"
class Model:
"""模型封装类"""
def __init__(self, config_path: str, model_path: str, device: str, language: str):
self.config_path: str = os.path.normpath(config_path)
self.model_path: str = os.path.normpath(model_path)
self.device: str = device
self.language: str = language
self.hps = utils.get_hparams_from_file(config_path)
self.spk2id: Dict[str, int] = self.hps.data.spk2id # spk - id 映射字典
self.id2spk: Dict[int, str] = dict() # id - spk 映射字典
for speaker, speaker_id in self.hps.data.spk2id.items():
self.id2spk[speaker_id] = speaker
self.version: str = (
self.hps.version if hasattr(self.hps, "version") else latest_version
)
self.net_g = get_net_g(
model_path=model_path,
version=self.version,
device=device,
hps=self.hps,
)
def to_dict(self) -> Dict[str, any]:
return {
"config_path": self.config_path,
"model_path": self.model_path,
"device": self.device,
"language": self.language,
"spk2id": self.spk2id,
"id2spk": self.id2spk,
"version": self.version,
}
class Models:
def __init__(self):
self.models: Dict[int, Model] = dict()
self.num = 0
# spkInfo[角色名][模型id] = 角色id
self.spk_info: Dict[str, Dict[int, int]] = dict()
self.path2ids: Dict[str, Set[int]] = dict() # 路径指向的model的id
def init_model(
self, config_path: str, model_path: str, device: str, language: str
) -> int:
"""
初始化并添加一个模型
:param config_path: 模型config.json路径
:param model_path: 模型路径
:param device: 模型推理使用设备
:param language: 模型推理默认语言
"""
# 若路径中的模型已存在,则不添加模型,若不存在,则进行初始化。
model_path = os.path.realpath(model_path)
if model_path not in self.path2ids.keys():
self.path2ids[model_path] = {self.num}
self.models[self.num] = Model(
config_path=config_path,
model_path=model_path,
device=device,
language=language,
)
logger.success(f"添加模型{model_path},使用配置文件{os.path.realpath(config_path)}")
else:
# 获取一个指向id
m_id = next(iter(self.path2ids[model_path]))
self.models[self.num] = self.models[m_id]
self.path2ids[model_path].add(self.num)
logger.success("模型已存在,添加模型引用。")
# 添加角色信息
for speaker, speaker_id in self.models[self.num].spk2id.items():
if speaker not in self.spk_info.keys():
self.spk_info[speaker] = {self.num: speaker_id}
else:
self.spk_info[speaker][self.num] = speaker_id
# 修改计数
self.num += 1
return self.num - 1
def del_model(self, index: int) -> Optional[int]:
"""删除对应序号的模型,若不存在则返回None"""
if index not in self.models.keys():
return None
# 删除角色信息
for speaker, speaker_id in self.models[index].spk2id.items():
self.spk_info[speaker].pop(index)
if len(self.spk_info[speaker]) == 0:
# 若对应角色的所有模型都被删除,则清除该角色信息
self.spk_info.pop(speaker)
# 删除路径信息
model_path = os.path.realpath(self.models[index].model_path)
self.path2ids[model_path].remove(index)
if len(self.path2ids[model_path]) == 0:
self.path2ids.pop(model_path)
logger.success(f"删除模型{model_path}, id = {index}")
else:
logger.success(f"删除模型引用{model_path}, id = {index}")
# 删除模型
self.models.pop(index)
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return index
def get_models(self):
"""获取所有模型"""
return self.models
if __name__ == "__main__":
app = FastAPI()
app.logger = logger
# 挂载静态文件
StaticDir: str = "./Web"
dirs = [fir.name for fir in os.scandir(StaticDir) if fir.is_dir()]
files = [fir.name for fir in os.scandir(StaticDir) if fir.is_dir()]
for dirName in dirs:
app.mount(
f"/{dirName}",
StaticFiles(directory=f"./{StaticDir}/{dirName}"),
name=dirName,
)
loaded_models = Models()
# 加载模型
models_info = config.server_config.models
for model_info in models_info:
loaded_models.init_model(
config_path=model_info["config"],
model_path=model_info["model"],
device=model_info["device"],
language=model_info["language"],
)
@app.get("/")
async def index():
return FileResponse("./Web/index.html")
class Text(BaseModel):
text: str
@app.post("/voice")
def voice(
request: Request, # fastapi自动注入
text: Text,
model_id: int = Query(..., description="模型ID"), # 模型序号
speaker_name: str = Query(
None, description="说话人名"
), # speaker_name与 speaker_id二者选其一
speaker_id: int = Query(None, description="说话人id,与speaker_name二选一"),
sdp_ratio: float = Query(0.2, description="SDP/DP混合比"),
noise: float = Query(0.2, description="感情"),
noisew: float = Query(0.9, description="音素长度"),
length: float = Query(1, description="语速"),
language: str = Query(None, description="语言"), # 若不指定使用语言则使用默认值
auto_translate: bool = Query(False, description="自动翻译"),
auto_split: bool = Query(False, description="自动切分"),
):
"""语音接口"""
text = text.text
logger.info(
f"{request.client.host}:{request.client.port}/voice { unquote(str(request.query_params) )} text={text}"
)
# 检查模型是否存在
if model_id not in loaded_models.models.keys():
return {"status": 10, "detail": f"模型model_id={model_id}未加载"}
# 检查是否提供speaker
if speaker_name is None and speaker_id is None:
return {"status": 11, "detail": "请提供speaker_name或speaker_id"}
elif speaker_name is None:
# 检查speaker_id是否存在
if speaker_id not in loaded_models.models[model_id].id2spk.keys():
return {"status": 12, "detail": f"角色speaker_id={speaker_id}不存在"}
speaker_name = loaded_models.models[model_id].id2spk[speaker_id]
# 检查speaker_name是否存在
if speaker_name not in loaded_models.models[model_id].spk2id.keys():
return {"status": 13, "detail": f"角色speaker_name={speaker_name}不存在"}
if language is None:
language = loaded_models.models[model_id].language
if auto_translate:
text = trans.translate(Sentence=text, to_Language=language.lower())
if not auto_split:
with torch.no_grad():
audio = infer(
text=text,
sdp_ratio=sdp_ratio,
noise_scale=noise,
noise_scale_w=noisew,
length_scale=length,
sid=speaker_name,
language=language,
hps=loaded_models.models[model_id].hps,
net_g=loaded_models.models[model_id].net_g,
device=loaded_models.models[model_id].device,
)
else:
texts = cut_sent(text)
audios = []
with torch.no_grad():
for t in texts:
audios.append(
infer(
text=t,
sdp_ratio=sdp_ratio,
noise_scale=noise,
noise_scale_w=noisew,
length_scale=length,
sid=speaker_name,
language=language,
hps=loaded_models.models[model_id].hps,
net_g=loaded_models.models[model_id].net_g,
device=loaded_models.models[model_id].device,
)
)
audios.append(np.zeros((int)(44100 * 0.3)))
audio = np.concatenate(audios)
audio = gradio.processing_utils.convert_to_16_bit_wav(audio)
wavContent = BytesIO()
wavfile.write(
wavContent, loaded_models.models[model_id].hps.data.sampling_rate, audio
)
response = Response(content=wavContent.getvalue(), media_type="audio/wav")
return response
@app.get("/voice")
def voice(
request: Request, # fastapi自动注入
text: str = Query(..., description="输入文字"),
model_id: int = Query(..., description="模型ID"), # 模型序号
speaker_name: str = Query(
None, description="说话人名"
), # speaker_name与 speaker_id二者选其一
speaker_id: int = Query(None, description="说话人id,与speaker_name二选一"),
sdp_ratio: float = Query(0.2, description="SDP/DP混合比"),
noise: float = Query(0.2, description="感情"),
noisew: float = Query(0.9, description="音素长度"),
length: float = Query(1, description="语速"),
language: str = Query(None, description="语言"), # 若不指定使用语言则使用默认值
auto_translate: bool = Query(False, description="自动翻译"),
auto_split: bool = Query(False, description="自动切分"),
):
"""语音接口"""
logger.info(
f"{request.client.host}:{request.client.port}/voice { unquote(str(request.query_params) )}"
)
# 检查模型是否存在
if model_id not in loaded_models.models.keys():
return {"status": 10, "detail": f"模型model_id={model_id}未加载"}
# 检查是否提供speaker
if speaker_name is None and speaker_id is None:
return {"status": 11, "detail": "请提供speaker_name或speaker_id"}
elif speaker_name is None:
# 检查speaker_id是否存在
if speaker_id not in loaded_models.models[model_id].id2spk.keys():
return {"status": 12, "detail": f"角色speaker_id={speaker_id}不存在"}
speaker_name = loaded_models.models[model_id].id2spk[speaker_id]
# 检查speaker_name是否存在
if speaker_name not in loaded_models.models[model_id].spk2id.keys():
return {"status": 13, "detail": f"角色speaker_name={speaker_name}不存在"}
if language is None:
language = loaded_models.models[model_id].language
if auto_translate:
text = trans.translate(Sentence=text, to_Language=language.lower())
if not auto_split:
with torch.no_grad():
audio = infer(
text=text,
sdp_ratio=sdp_ratio,
noise_scale=noise,
noise_scale_w=noisew,
length_scale=length,
sid=speaker_name,
language=language,
hps=loaded_models.models[model_id].hps,
net_g=loaded_models.models[model_id].net_g,
device=loaded_models.models[model_id].device,
)
else:
texts = cut_sent(text)
audios = []
with torch.no_grad():
for t in texts:
audios.append(
infer(
text=t,
sdp_ratio=sdp_ratio,
noise_scale=noise,
noise_scale_w=noisew,
length_scale=length,
sid=speaker_name,
language=language,
hps=loaded_models.models[model_id].hps,
net_g=loaded_models.models[model_id].net_g,
device=loaded_models.models[model_id].device,
)
)
audios.append(np.zeros((int)(44100 * 0.3)))
audio = np.concatenate(audios)
audio = gradio.processing_utils.convert_to_16_bit_wav(audio)
wavContent = BytesIO()
wavfile.write(
wavContent, loaded_models.models[model_id].hps.data.sampling_rate, audio
)
response = Response(content=wavContent.getvalue(), media_type="audio/wav")
return response
@app.get("/models/info")
def get_loaded_models_info(request: Request):
"""获取已加载模型信息"""
result: Dict[str, Dict] = dict()
for key, model in loaded_models.models.items():
result[str(key)] = model.to_dict()
return result
@app.get("/models/delete")
def delete_model(
request: Request, model_id: int = Query(..., description="删除模型id")
):
"""删除指定模型"""
logger.info(
f"{request.client.host}:{request.client.port}/models/delete { unquote(str(request.query_params) )}"
)
result = loaded_models.del_model(model_id)
if result is None:
return {"status": 14, "detail": f"模型{model_id}不存在,删除失败"}
return {"status": 0, "detail": "删除成功"}
@app.get("/models/add")
def add_model(
request: Request,
model_path: str = Query(..., description="添加模型路径"),
config_path: str = Query(
None, description="添加模型配置文件路径,不填则使用./config.json或../config.json"
),
device: str = Query("cuda", description="推理使用设备"),
language: str = Query("ZH", description="模型默认语言"),
):
"""添加指定模型:允许重复添加相同路径模型,且不重复占用内存"""
logger.info(
f"{request.client.host}:{request.client.port}/models/add { unquote(str(request.query_params) )}"
)
if config_path is None:
model_dir = os.path.dirname(model_path)
if os.path.isfile(os.path.join(model_dir, "config.json")):
config_path = os.path.join(model_dir, "config.json")
elif os.path.isfile(os.path.join(model_dir, "../config.json")):
config_path = os.path.join(model_dir, "../config.json")
else:
return {
"status": 15,
"detail": "查询未传入配置文件路径,同时默认路径./与../中不存在配置文件config.json。",
}
try:
model_id = loaded_models.init_model(
config_path=config_path,
model_path=model_path,
device=device,
language=language,
)
except Exception:
logging.exception("模型加载出错")
return {
"status": 16,
"detail": "模型加载出错,详细查看日志",
}
return {
"status": 0,
"detail": "模型添加成功",
"Data": {
"model_id": model_id,
"model_info": loaded_models.models[model_id].to_dict(),
},
}
def _get_all_models(root_dir: str = "Data", only_unloaded: bool = False):
"""从root_dir搜索获取所有可用模型"""
result: Dict[str, List[str]] = dict()
files = os.listdir(root_dir) + ["."]
for file in files:
if os.path.isdir(os.path.join(root_dir, file)):
sub_dir = os.path.join(root_dir, file)
# 搜索 "sub_dir" 、 "sub_dir/models" 两个路径
result[file] = list()
sub_files = os.listdir(sub_dir)
model_files = []
for sub_file in sub_files:
relpath = os.path.realpath(os.path.join(sub_dir, sub_file))
if only_unloaded and relpath in loaded_models.path2ids.keys():
continue
if sub_file.endswith(".pth") and sub_file.startswith("G_"):
if os.path.isfile(relpath):
model_files.append(sub_file)
# 对模型文件按步数排序
model_files = sorted(
model_files,
key=lambda pth: int(pth.lstrip("G_").rstrip(".pth"))
if pth.lstrip("G_").rstrip(".pth").isdigit()
else 10**10,
)
result[file] = model_files
models_dir = os.path.join(sub_dir, "models")
model_files = []
if os.path.isdir(models_dir):
sub_files = os.listdir(models_dir)
for sub_file in sub_files:
relpath = os.path.realpath(os.path.join(models_dir, sub_file))
if only_unloaded and relpath in loaded_models.path2ids.keys():
continue
if sub_file.endswith(".pth") and sub_file.startswith("G_"):
if os.path.isfile(os.path.join(models_dir, sub_file)):
model_files.append(f"models/{sub_file}")
# 对模型文件按步数排序
model_files = sorted(
model_files,
key=lambda pth: int(pth.lstrip("models/G_").rstrip(".pth"))
if pth.lstrip("models/G_").rstrip(".pth").isdigit()
else 10**10,
)
result[file] += model_files
if len(result[file]) == 0:
result.pop(file)
return result
@app.get("/models/get_unloaded")
def get_unloaded_models_info(
request: Request, root_dir: str = Query("Data", description="搜索根目录")
):
"""获取未加载模型"""
logger.info(
f"{request.client.host}:{request.client.port}/models/get_unloaded { unquote(str(request.query_params) )}"
)
return _get_all_models(root_dir, only_unloaded=True)
@app.get("/models/get_local")
def get_local_models_info(
request: Request, root_dir: str = Query("Data", description="搜索根目录")
):
"""获取全部本地模型"""
logger.info(
f"{request.client.host}:{request.client.port}/models/get_local { unquote(str(request.query_params) )}"
)
return _get_all_models(root_dir, only_unloaded=False)
@app.get("/status")
def get_status():
"""获取电脑运行状态"""
cpu_percent = psutil.cpu_percent(interval=1)
memory_info = psutil.virtual_memory()
memory_total = memory_info.total
memory_available = memory_info.available
memory_used = memory_info.used
memory_percent = memory_info.percent
gpuInfo = []
devices = ["cpu"]
for i in range(torch.cuda.device_count()):
devices.append(f"cuda:{i}")
gpus = GPUtil.getGPUs()
for gpu in gpus:
gpuInfo.append(
{
"gpu_id": gpu.id,
"gpu_load": gpu.load,
"gpu_memory": {
"total": gpu.memoryTotal,
"used": gpu.memoryUsed,
"free": gpu.memoryFree,
},
}
)
return {
"devices": devices,
"cpu_percent": cpu_percent,
"memory_total": memory_total,
"memory_available": memory_available,
"memory_used": memory_used,
"memory_percent": memory_percent,
"gpu": gpuInfo,
}
@app.get("/tools/translate")
def translate(
request: Request,
texts: str = Query(..., description="待翻译文本"),
to_language: str = Query(..., description="翻译目标语言"),
):
"""翻译"""
logger.info(
f"{request.client.host}:{request.client.port}/tools/translate { unquote(str(request.query_params) )}"
)
return {"texts": trans.translate(Sentence=texts, to_Language=to_language)}
all_examples: Dict[str, Dict[str, List]] = dict() # 存放示例
@app.get("/tools/random_example")
def random_example(
request: Request,
language: str = Query(None, description="指定语言,未指定则随机返回"),
root_dir: str = Query("Data", description="搜索根目录"),
):
"""
获取一个随机音频+文本,用于对比,音频会从本地目录随机选择。
"""
logger.info(
f"{request.client.host}:{request.client.port}/tools/random_example { unquote(str(request.query_params) )}"
)
global all_examples
# 数据初始化
if root_dir not in all_examples.keys():
all_examples[root_dir] = {"ZH": [], "JP": [], "EN": []}
examples = all_examples[root_dir]
# 从项目Data目录中搜索train/val.list
for root, directories, _files in os.walk(root_dir):
for file in _files:
if file in ["train.list", "val.list"]:
with open(
os.path.join(root, file), mode="r", encoding="utf-8"
) as f:
lines = f.readlines()
for line in lines:
data = line.split("|")
if len(data) != 7:
continue
# 音频存在 且语言为ZH/EN/JP
if os.path.isfile(data[0]) and data[2] in [
"ZH",
"JP",
"EN",
]:
examples[data[2]].append(
{
"text": data[3],
"audio": data[0],
"speaker": data[1],
}
)
examples = all_examples[root_dir]
if language is None:
if len(examples["ZH"]) + len(examples["JP"]) + len(examples["EN"]) == 0:
return {"status": 17, "detail": "没有加载任何示例数据"}
else:
# 随机选一个
rand_num = random.randint(
0,
len(examples["ZH"]) + len(examples["JP"]) + len(examples["EN"]) - 1,
)
# ZH
if rand_num < len(examples["ZH"]):
return {"status": 0, "Data": examples["ZH"][rand_num]}
# JP
if rand_num < len(examples["ZH"]) + len(examples["JP"]):
return {
"status": 0,
"Data": examples["JP"][rand_num - len(examples["ZH"])],
}
# EN
return {
"status": 0,
"Data": examples["EN"][
rand_num - len(examples["ZH"]) - len(examples["JP"])
],
}
else:
if len(examples[language]) == 0:
return {"status": 17, "detail": f"没有加载任何{language}数据"}
return {
"status": 0,
"Data": examples[language][
random.randint(0, len(examples[language]) - 1)
],
}
@app.get("/tools/get_audio")
def get_audio(request: Request, path: str = Query(..., description="本地音频路径")):
logger.info(
f"{request.client.host}:{request.client.port}/tools/get_audio { unquote(str(request.query_params) )}"
)
if not os.path.isfile(path):
return {"status": 18, "detail": "指定音频不存在"}
if not path.endswith(".wav"):
return {"status": 19, "detail": "非wav格式文件"}
return FileResponse(path=path)
logger.warning("本地服务,请勿将服务端口暴露于外网")
logger.info(f"api文档地址 http://127.0.0.1:{config.server_config.port}/docs")
webbrowser.open(f"http://127.0.0.1:{config.server_config.port}")
uvicorn.run(
app, port=config.server_config.port, host="0.0.0.0", log_level="warning"
)
|