Spaces:
Runtime error
Runtime error
Add application file
Browse files- app.py +66 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import whisper
|
3 |
+
from pytube import YouTube
|
4 |
+
|
5 |
+
def get_audio(url):
|
6 |
+
yt = YouTube(url)
|
7 |
+
return yt.streams.filter(only_audio=True)[0].download(filename="tmp.mp4")
|
8 |
+
|
9 |
+
def get_transcript(url, model_size, lang, format):
|
10 |
+
|
11 |
+
model = whisper.load_model(model_size)
|
12 |
+
|
13 |
+
if lang == "None":
|
14 |
+
lang = None
|
15 |
+
|
16 |
+
result = model.transcribe(get_audio(url), fp16=False, language=lang)
|
17 |
+
|
18 |
+
if format == "None":
|
19 |
+
return result["text"]
|
20 |
+
elif format == ".srt":
|
21 |
+
return format_to_srt(result["segments"])
|
22 |
+
|
23 |
+
def format_to_srt(segments):
|
24 |
+
output = ""
|
25 |
+
for i, segment in enumerate(segments):
|
26 |
+
output += f"{i + 1}\n"
|
27 |
+
output += f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n"
|
28 |
+
output += f"{segment['text']}\n\n"
|
29 |
+
return output
|
30 |
+
|
31 |
+
def format_timestamp(t):
|
32 |
+
hh = t//3600
|
33 |
+
mm = (t - hh*3600)//60
|
34 |
+
ss = t - hh*3600 - mm*60
|
35 |
+
mi = (t - int(t))*1000
|
36 |
+
return f"{int(hh):02d}:{int(mm):02d}:{int(ss):02d},{int(mi):03d}"
|
37 |
+
|
38 |
+
|
39 |
+
langs = ["None"] + sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
40 |
+
model_size = list(whisper._MODELS.keys())
|
41 |
+
|
42 |
+
with gr.Blocks() as demo:
|
43 |
+
|
44 |
+
with gr.Row():
|
45 |
+
|
46 |
+
with gr.Column():
|
47 |
+
|
48 |
+
with gr.Row():
|
49 |
+
url = gr.Textbox(placeholder='Youtube video URL', label='URL')
|
50 |
+
|
51 |
+
with gr.Row():
|
52 |
+
|
53 |
+
model_size = gr.Dropdown(choices=model_size, value='tiny', label="Model")
|
54 |
+
lang = gr.Dropdown(choices=langs, value="None", label="Language (Optional)")
|
55 |
+
format = gr.Dropdown(choices=["None", ".srt"], value="None", label="Timestamps? (Optional)")
|
56 |
+
|
57 |
+
with gr.Row():
|
58 |
+
gr.Markdown("Larger models are more accurate, but slower. For 1min video, it'll take ~30s (tiny), ~1min (base), ~3min (small), ~5min (medium), etc.")
|
59 |
+
transcribe_btn = gr.Button('Transcribe')
|
60 |
+
|
61 |
+
with gr.Column():
|
62 |
+
outputs = gr.Textbox(placeholder='Transcription of the video', label='Transcription')
|
63 |
+
|
64 |
+
transcribe_btn.click(get_transcript, inputs=[url, model_size, lang, format], outputs=outputs)
|
65 |
+
|
66 |
+
demo.launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
pytube
|
3 |
+
git+https://github.com/openai/whisper.git
|