Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -53,14 +53,14 @@ quality_mapping = {
|
|
53 |
|
54 |
# Pre-load models and tokenizer for quality prediction
|
55 |
tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
|
56 |
-
models = {path: AutoModelForSequenceClassification.from_pretrained(path) for path in model_paths}
|
57 |
|
58 |
def get_quality_name(model_name):
|
59 |
return quality_mapping.get(model_name.split('/')[-1], "Unknown Quality")
|
60 |
|
61 |
|
62 |
def model_prediction(model, text, device):
|
63 |
-
model.to(device)
|
64 |
model.eval()
|
65 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
66 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
@@ -69,19 +69,19 @@ def model_prediction(model, text, device):
|
|
69 |
logits = outputs.logits
|
70 |
probs = softmax(logits.cpu().numpy(), axis=1)
|
71 |
avg_prob = np.mean(probs[:, 1])
|
72 |
-
model.to("cpu")
|
73 |
return avg_prob
|
74 |
|
75 |
# --- Llama 3.2 3B Model Setup ---
|
76 |
-
LLAMA_MAX_MAX_NEW_TOKENS = 512
|
77 |
-
LLAMA_DEFAULT_MAX_NEW_TOKENS = 512
|
78 |
-
LLAMA_MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "
|
79 |
-
llama_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
80 |
llama_model_id = "meta-llama/Llama-3.2-3B-Instruct"
|
81 |
llama_tokenizer = AutoTokenizer.from_pretrained(llama_model_id)
|
82 |
llama_model = AutoModelForCausalLM.from_pretrained(
|
83 |
llama_model_id,
|
84 |
-
device_map="auto",
|
85 |
torch_dtype=torch.bfloat16,
|
86 |
)
|
87 |
llama_model.eval()
|
@@ -96,7 +96,7 @@ def llama_generate(
|
|
96 |
top_p: float = 0.9,
|
97 |
top_k: int = 50,
|
98 |
repetition_penalty: float = 1.2,
|
99 |
-
) -> str:
|
100 |
|
101 |
inputs = llama_tokenizer(message, return_tensors="pt", padding=True, truncation=True, max_length=LLAMA_MAX_INPUT_TOKEN_LENGTH).to(llama_model.device)
|
102 |
|
@@ -104,8 +104,7 @@ def llama_generate(
|
|
104 |
inputs.input_ids = inputs.input_ids[:, -LLAMA_MAX_INPUT_TOKEN_LENGTH:]
|
105 |
gr.Warning(f"Trimmed input from conversation as it was longer than {LLAMA_MAX_INPUT_TOKEN_LENGTH} tokens.")
|
106 |
|
107 |
-
|
108 |
-
with torch.no_grad(): # Ensure no gradient calculation
|
109 |
generate_ids = llama_model.generate(
|
110 |
**inputs,
|
111 |
max_new_tokens=max_new_tokens,
|
@@ -115,56 +114,41 @@ def llama_generate(
|
|
115 |
temperature=temperature,
|
116 |
num_beams=1,
|
117 |
repetition_penalty=repetition_penalty,
|
118 |
-
pad_token_id=llama_tokenizer.pad_token_id,
|
119 |
-
eos_token_id=llama_tokenizer.eos_token_id,
|
120 |
|
121 |
)
|
122 |
output_text = llama_tokenizer.decode(generate_ids[0], skip_special_tokens=True)
|
123 |
-
torch.cuda.empty_cache()
|
124 |
return output_text
|
125 |
|
126 |
|
127 |
-
def generate_explanation(issue_text,
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
130 |
|
131 |
prompt = f"""
|
132 |
Given the following issue description:
|
133 |
---
|
134 |
{issue_text}
|
135 |
---
|
136 |
-
Explain why this issue might be classified
|
137 |
"""
|
138 |
-
for quality, _ in top_qualities:
|
139 |
-
prompt += f"- {quality}\n"
|
140 |
-
|
141 |
-
|
142 |
try:
|
143 |
explanation = llama_generate(prompt)
|
144 |
-
# Format
|
145 |
-
formatted_explanation = ""
|
146 |
-
|
147 |
-
formatted_explanation += f"<p><b>{quality}:</b></p>" # Bold the quality name
|
148 |
-
# Find the explanation for this specific quality. This is a simple
|
149 |
-
# approach that works if Llama follows the prompt structure.
|
150 |
-
# A more robust approach might use regex or sentence embeddings.
|
151 |
-
start = explanation.find(quality)
|
152 |
-
if start != -1:
|
153 |
-
start += len(quality) + 2 # Move past "Quality:"
|
154 |
-
end = explanation.find("\n", start) # Find next newline
|
155 |
-
if end == -1:
|
156 |
-
end = len(explanation)
|
157 |
-
formatted_explanation += f"<p>{explanation[start:end].strip()}</p>" # Add the explanation text
|
158 |
-
else:
|
159 |
-
formatted_explanation += f"<p>Explanation for {quality} not found.</p>"
|
160 |
-
|
161 |
-
return f"<div style='overflow-y: scroll; max-height: 400px;'>{formatted_explanation}</div>" #Added scroll
|
162 |
except Exception as e:
|
163 |
logging.error(f"Error during Llama generation: {e}")
|
164 |
return "<div style='color: red;'>An error occurred while generating the explanation.</div>"
|
165 |
|
166 |
|
167 |
-
|
|
|
168 |
def main_interface(text):
|
169 |
if not text.strip():
|
170 |
return "<div style='color: red;'>No text provided. Please enter a valid issue description.</div>", "", ""
|
@@ -172,26 +156,33 @@ def main_interface(text):
|
|
172 |
if len(text) < 30:
|
173 |
return "<div style='color: red;'>Text is less than 30 characters.</div>", "", ""
|
174 |
|
175 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
176 |
results = []
|
177 |
for model_path, model in models.items():
|
178 |
quality_name = get_quality_name(model_path)
|
179 |
-
avg_prob = model_prediction(model, text, device)
|
180 |
-
if avg_prob >= 0.95:
|
181 |
results.append((quality_name, avg_prob))
|
182 |
logging.info(f"Model: {model_path}, Quality: {quality_name}, Average Probability: {avg_prob:.3f}")
|
183 |
|
184 |
-
|
185 |
if not results:
|
186 |
-
return "<div style='color: red;'>No recommendation. Prediction probability is below the threshold
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
-
top_qualities = sorted(results, key=lambda x: x[1], reverse=True)[:3]
|
189 |
-
output_html = render_html_output(top_qualities)
|
190 |
-
explanation = generate_explanation(text, top_qualities)
|
191 |
|
192 |
return output_html, "", explanation
|
193 |
|
194 |
def render_html_output(top_qualities):
|
|
|
195 |
styles = """
|
196 |
<style>
|
197 |
.quality-container {
|
@@ -210,25 +201,18 @@ def render_html_output(top_qualities):
|
|
210 |
margin-right: 10px;
|
211 |
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
|
212 |
}
|
213 |
-
.probability {
|
214 |
-
display: block;
|
215 |
-
margin-top: 10px;
|
216 |
-
font-size: 16px;
|
217 |
-
color: #007bff;
|
218 |
-
}
|
219 |
</style>
|
220 |
"""
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
<
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
"""
|
232 |
return styles + html_content
|
233 |
|
234 |
example_texts = [
|
@@ -237,17 +221,48 @@ example_texts = [
|
|
237 |
["There is frequent miscommunication between the development and QA teams regarding feature specifications.\n\nEnvironment: Inter-team meetings\nReproduction: Audit recent communication logs and meeting notes between the teams."],
|
238 |
["The service-oriented architecture does not effectively isolate failures, leading to cascading failures across services.\n\nEnvironment: Microservices architecture\nReproduction: Simulate a service failure and observe the impact on other services."]
|
239 |
]
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
interface = gr.Interface(
|
242 |
fn=main_interface,
|
243 |
inputs=gr.Textbox(lines=7, label="Issue Description", placeholder="Enter your issue text here"),
|
244 |
outputs=[
|
245 |
gr.HTML(label="Prediction Output"),
|
246 |
gr.Textbox(label="Predictions", visible=False),
|
247 |
-
gr.HTML(label="Explanation")
|
248 |
],
|
249 |
title="QualityTagger",
|
250 |
description="This tool classifies text into different quality domains such as Security, Usability, etc., and provides explanations.",
|
251 |
-
examples=example_texts
|
|
|
252 |
)
|
253 |
interface.launch(share=True)
|
|
|
53 |
|
54 |
# Pre-load models and tokenizer for quality prediction
|
55 |
tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
|
56 |
+
models = {path: AutoModelForSequenceClassification.from_pretrained(path) for path in model_paths}
|
57 |
|
58 |
def get_quality_name(model_name):
|
59 |
return quality_mapping.get(model_name.split('/')[-1], "Unknown Quality")
|
60 |
|
61 |
|
62 |
def model_prediction(model, text, device):
|
63 |
+
model.to(device)
|
64 |
model.eval()
|
65 |
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
66 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
69 |
logits = outputs.logits
|
70 |
probs = softmax(logits.cpu().numpy(), axis=1)
|
71 |
avg_prob = np.mean(probs[:, 1])
|
72 |
+
model.to("cpu")
|
73 |
return avg_prob
|
74 |
|
75 |
# --- Llama 3.2 3B Model Setup ---
|
76 |
+
LLAMA_MAX_MAX_NEW_TOKENS = 512
|
77 |
+
LLAMA_DEFAULT_MAX_NEW_TOKENS = 512
|
78 |
+
LLAMA_MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "1024"))
|
79 |
+
llama_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
80 |
llama_model_id = "meta-llama/Llama-3.2-3B-Instruct"
|
81 |
llama_tokenizer = AutoTokenizer.from_pretrained(llama_model_id)
|
82 |
llama_model = AutoModelForCausalLM.from_pretrained(
|
83 |
llama_model_id,
|
84 |
+
device_map="auto",
|
85 |
torch_dtype=torch.bfloat16,
|
86 |
)
|
87 |
llama_model.eval()
|
|
|
96 |
top_p: float = 0.9,
|
97 |
top_k: int = 50,
|
98 |
repetition_penalty: float = 1.2,
|
99 |
+
) -> str:
|
100 |
|
101 |
inputs = llama_tokenizer(message, return_tensors="pt", padding=True, truncation=True, max_length=LLAMA_MAX_INPUT_TOKEN_LENGTH).to(llama_model.device)
|
102 |
|
|
|
104 |
inputs.input_ids = inputs.input_ids[:, -LLAMA_MAX_INPUT_TOKEN_LENGTH:]
|
105 |
gr.Warning(f"Trimmed input from conversation as it was longer than {LLAMA_MAX_INPUT_TOKEN_LENGTH} tokens.")
|
106 |
|
107 |
+
with torch.no_grad():
|
|
|
108 |
generate_ids = llama_model.generate(
|
109 |
**inputs,
|
110 |
max_new_tokens=max_new_tokens,
|
|
|
114 |
temperature=temperature,
|
115 |
num_beams=1,
|
116 |
repetition_penalty=repetition_penalty,
|
117 |
+
pad_token_id=llama_tokenizer.pad_token_id,
|
118 |
+
eos_token_id=llama_tokenizer.eos_token_id,
|
119 |
|
120 |
)
|
121 |
output_text = llama_tokenizer.decode(generate_ids[0], skip_special_tokens=True)
|
122 |
+
torch.cuda.empty_cache()
|
123 |
return output_text
|
124 |
|
125 |
|
126 |
+
def generate_explanation(issue_text, top_quality):
|
127 |
+
"""Generates an explanation for the *single* top quality above threshold."""
|
128 |
+
if not top_quality:
|
129 |
+
return "<div style='color: red;'>No explanation available as no quality tags met the threshold.</div>"
|
130 |
+
|
131 |
+
quality_name = top_quality[0] # Get the name of the top quality
|
132 |
|
133 |
prompt = f"""
|
134 |
Given the following issue description:
|
135 |
---
|
136 |
{issue_text}
|
137 |
---
|
138 |
+
Explain why this issue might be classified as a **{quality_name}** issue. Provide a concise explanation, relating it back to the issue description.
|
139 |
"""
|
|
|
|
|
|
|
|
|
140 |
try:
|
141 |
explanation = llama_generate(prompt)
|
142 |
+
# Format for better readability, directly including the quality name.
|
143 |
+
formatted_explanation = f"<p><b>{quality_name}:</b></p><p>{explanation}</p>"
|
144 |
+
return f"<div style='overflow-y: scroll; max-height: 400px;'>{formatted_explanation}</div>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
except Exception as e:
|
146 |
logging.error(f"Error during Llama generation: {e}")
|
147 |
return "<div style='color: red;'>An error occurred while generating the explanation.</div>"
|
148 |
|
149 |
|
150 |
+
|
151 |
+
# @spaces.GPU(duration=60)
|
152 |
def main_interface(text):
|
153 |
if not text.strip():
|
154 |
return "<div style='color: red;'>No text provided. Please enter a valid issue description.</div>", "", ""
|
|
|
156 |
if len(text) < 30:
|
157 |
return "<div style='color: red;'>Text is less than 30 characters.</div>", "", ""
|
158 |
|
159 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
160 |
results = []
|
161 |
for model_path, model in models.items():
|
162 |
quality_name = get_quality_name(model_path)
|
163 |
+
avg_prob = model_prediction(model, text, device)
|
164 |
+
if avg_prob >= 0.95: # Keep *all* results above the threshold
|
165 |
results.append((quality_name, avg_prob))
|
166 |
logging.info(f"Model: {model_path}, Quality: {quality_name}, Average Probability: {avg_prob:.3f}")
|
167 |
|
|
|
168 |
if not results:
|
169 |
+
return "<div style='color: red;'>No recommendation. Prediction probability is below the threshold.</div>", "", ""
|
170 |
+
|
171 |
+
# Sort and get the top result (if any meet the threshold)
|
172 |
+
top_result = sorted(results, key=lambda x: x[1], reverse=True)
|
173 |
+
if top_result:
|
174 |
+
top_quality = top_result[:1] # Select only the top result
|
175 |
+
output_html = render_html_output(top_quality)
|
176 |
+
explanation = generate_explanation(text, top_quality)
|
177 |
+
else: # Handle case no predictions >= 0.95
|
178 |
+
output_html = "<div style='color: red;'>No quality tag met the prediction probability threshold (>= 0.95).</div>"
|
179 |
+
explanation = ""
|
180 |
|
|
|
|
|
|
|
181 |
|
182 |
return output_html, "", explanation
|
183 |
|
184 |
def render_html_output(top_qualities):
|
185 |
+
#Simplified to show only the top prediction
|
186 |
styles = """
|
187 |
<style>
|
188 |
.quality-container {
|
|
|
201 |
margin-right: 10px;
|
202 |
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
|
203 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
</style>
|
205 |
"""
|
206 |
+
if not top_qualities: # Handle empty case
|
207 |
+
return styles + "<div class='quality-container'>No Top Prediction</div>"
|
208 |
+
|
209 |
+
quality, _ = top_qualities[0] #We know there is only one
|
210 |
+
html_content = f"""
|
211 |
+
<div class="quality-container">
|
212 |
+
<span class="ranking">Top Prediction</span>
|
213 |
+
<span class="quality-label">{quality}</span>
|
214 |
+
</div>
|
215 |
+
"""
|
|
|
216 |
return styles + html_content
|
217 |
|
218 |
example_texts = [
|
|
|
221 |
["There is frequent miscommunication between the development and QA teams regarding feature specifications.\n\nEnvironment: Inter-team meetings\nReproduction: Audit recent communication logs and meeting notes between the teams."],
|
222 |
["The service-oriented architecture does not effectively isolate failures, leading to cascading failures across services.\n\nEnvironment: Microservices architecture\nReproduction: Simulate a service failure and observe the impact on other services."]
|
223 |
]
|
224 |
+
# Improved CSS for better layout and appearance
|
225 |
+
css = """
|
226 |
+
.quality-container {
|
227 |
+
font-family: Arial, sans-serif;
|
228 |
+
text-align: center;
|
229 |
+
margin-top: 20px;
|
230 |
+
padding: 10px;
|
231 |
+
border: 1px solid #ddd; /* Added border */
|
232 |
+
border-radius: 8px; /* Rounded corners */
|
233 |
+
background-color: #f9f9f9; /* Light background */
|
234 |
+
}
|
235 |
+
.quality-label, .ranking {
|
236 |
+
display: inline-block;
|
237 |
+
padding: 0.5em 1em;
|
238 |
+
font-size: 18px;
|
239 |
+
font-weight: bold;
|
240 |
+
color: white;
|
241 |
+
background-color: #007bff;
|
242 |
+
border-radius: 0.5rem;
|
243 |
+
margin-right: 10px;
|
244 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
|
245 |
+
}
|
246 |
+
#explanation {
|
247 |
+
border: 1px solid #ccc;
|
248 |
+
padding: 10px;
|
249 |
+
margin-top: 10px;
|
250 |
+
border-radius: 4px;
|
251 |
+
background-color: #fff; /* White background for explanation */
|
252 |
+
overflow-y: auto; /* Ensure scrollbar appears if needed */
|
253 |
+
}
|
254 |
+
"""
|
255 |
interface = gr.Interface(
|
256 |
fn=main_interface,
|
257 |
inputs=gr.Textbox(lines=7, label="Issue Description", placeholder="Enter your issue text here"),
|
258 |
outputs=[
|
259 |
gr.HTML(label="Prediction Output"),
|
260 |
gr.Textbox(label="Predictions", visible=False),
|
261 |
+
gr.HTML(label="Explanation")
|
262 |
],
|
263 |
title="QualityTagger",
|
264 |
description="This tool classifies text into different quality domains such as Security, Usability, etc., and provides explanations.",
|
265 |
+
examples=example_texts,
|
266 |
+
css=css # Apply the CSS
|
267 |
)
|
268 |
interface.launch(share=True)
|